No CrossRef data available.
Published online by Cambridge University Press: 11 February 2011
Interfaces, contacts, and homo- or hetero-junctions are critical components in nanometer dynamic random access memory (DRAM) semiconductor devices. With shrinkage in device dimensions, interfacial analysis by TEM becomes more and more challenging, especially in the case of investigating failure mechanisms for nanoscale FRACTURED INTERFACES where electronic signatures found to be open. In this article, fractured interfaces at several C1-type contacts (a path between a Bitline and a Metal 1 interconnector) in a deep-subquarter-micron 256Mbit DRAM device were investigated by a JEOL 2010F analytical transmission electron microscope (TEM) with field-emission gun (FEG) running at 200KV. Considering the difficulty to exactly focus the fractured nano-scale interfaces at sufficiently high magnifications, high-resolution TEM (HR-TEM) and analytical scanning transmission electron microscopy (STEM) coupled with x-ray energy dispersive spectroscopy (XEDS) elemental linescan techniques were employed to provide supplemental information from difference prospects. An in-depth understanding for the nanoscale interfacial fracture mechanisms was established, and a simple model is initiated accordingly.