Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:54:16.531Z Has data issue: false hasContentIssue false

Analysis of Tungstates and Sesquioxides, Two of the Best Yb3+-Doped Laser Crystals According to Different Evaluations.

Published online by Cambridge University Press:  21 March 2011

Georges Boulon
Affiliation:
Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon1 University, UMR 5620 CNRS, Bât. A.Kastler,10 rue Ampère, Domaine Scientifique de la Doua, 69622 Villeurbanne, France
Alain Brenier
Affiliation:
Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon1 University, UMR 5620 CNRS, Bât. A.Kastler,10 rue Ampère, Domaine Scientifique de la Doua, 69622 Villeurbanne, France
Laetitia Laversenne
Affiliation:
Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon1 University, UMR 5620 CNRS, Bât. A.Kastler,10 rue Ampère, Domaine Scientifique de la Doua, 69622 Villeurbanne, France
Yannick Guyot
Affiliation:
Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon1 University, UMR 5620 CNRS, Bât. A.Kastler,10 rue Ampère, Domaine Scientifique de la Doua, 69622 Villeurbanne, France
Christelle Goutaudier
Affiliation:
Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon1 University, UMR 5620 CNRS, Bât. A.Kastler,10 rue Ampère, Domaine Scientifique de la Doua, 69622 Villeurbanne, France
Marie-Thérèse Cohen-Adad
Affiliation:
Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon1 University, UMR 5620 CNRS, Bât. A.Kastler,10 rue Ampère, Domaine Scientifique de la Doua, 69622 Villeurbanne, France
Gérard Métrat
Affiliation:
Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon1 University, UMR 5620 CNRS, Bât. A.Kastler,10 rue Ampère, Domaine Scientifique de la Doua, 69622 Villeurbanne, France
Noelle Muhlstein
Affiliation:
Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon1 University, UMR 5620 CNRS, Bât. A.Kastler,10 rue Ampère, Domaine Scientifique de la Doua, 69622 Villeurbanne, France
Get access

Abstract

The development of reliable InGaAs laser diode pump sources emitting in the 900-980 nm spectral range is stongly influencing the field of lasers based on Yb3+-doped solid state crystals. Ca5(PO4)3F (C-FAP) and S-FAP (Sr5(PO4)3F) were soon recognized to be favourable hosts for Yb3+ lasing in the nanosecond pulse regime. This fact was supported by an evaluation of the spectroscopic properties of several Yb3+-doped crystals useful for laser action. This evaluation is based on two parameters known from spectroscopy, the emission cross-section at the laser wavelength and the minimum pump intensity required to achieve transparency at the laser wavelength.We think there is a need of a new evaluation of Yb3+-doped crystals in order to predict the laser efficiency in a more realistic manner in different kinds of regimes. We present here the main spectroscopic properties of two Yb3+-doped laser crystals which are grown in our Group: (i) KY(WO4)2 double tungstates by the Floating Crystal method and (ii) Y2O3sesquioxides by the Laser Heated Pedestal Growth method. The approach, based on a quasi-three level laser model, leads to compare all known Yb3+-doped crystals in a two-dimensional diagram considering the laser extracted power and the slope efficiency. We shall show that tungstates and sesquioxides belong to the highest laser crystal potential in CW-end pumping configuration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. DeLoach, D., Payne, S. A., Chase, L. L., Smith, L. K., Kway, W. L., Krupke, W. F.,IEEE J. Quant. Electr. Vol. 294 (1993) 1179 Google Scholar
2. Brenier, A., J. of Luminescence 923 (2001) 199204 Google Scholar
3. Brenier, A., Boulon, G., J.of Alloys and Compounds (accepted on September 2000)Google Scholar
4. Métrat, G., Muhlstein, N., Brenier, A., Boulon, G., Opt. Materials, 8 (1997) 75.Google Scholar
5. Laversenne, L., Guyot, Y., Goutaudier, C., Cohen-Adad, M.T., Boulon, G.,Optical Materials 164 (2001) 471 Google Scholar
6. Payne, S., Smith, L. K., Deloach, L. D., Kway, W. L., Tassano, J. B., Krupke, W. F., IEEE J. Quant. Electron. Vol. 301 (1994) 170. L. D. Deloach, S. A. Payne, L. K. Smith, W. L. Kway, W. L. Krupke, J. Opt. Soc. Am. B vol. 11 n° 2 (1994) 269.Google Scholar
7. Kuleshov, N. V., Lagatsky, A. A., Podlipensky, A. V., Mikhailov, V. P., Heumann, E., Diening, A., Huber, G., Advanced Solid State Lasers, TOPS vol. X, Edited by Pollock, C. R. and Bosenberg, W. R., (1997) 415.Google Scholar
8. , Augé, Mougel, F., Balembois, F., Georges, P., Brun, A., Aka, G., Kahn-Harari, A., Advanced Solid State Lasers, Topical Meeting of OSA (feb. 1999) Boston, paper TuC4-1/277.Google Scholar
9. Lagatsky, A. A., Kuleshov, N. V., Mikhailov, V. P., Advanced Solid State Lasers, Topical Meeting of OSA (feb. 1999) Boston, paper TuB12-1/247.Google Scholar
10. Wang, P., Dawes, J. M., Dekker, P., Zhang, H., Meng, X., Advanced Solid State Lasers, Topical Meeting of OSA (feb. 1999) Boston, paper ME14-1/151.Google Scholar
11. Wang, P., Dawes, J. M., Dekker, P., Piper, J. A., Advanced Solid State Lasers, Topical Meeting of OSA (feb. 1999) Boston, paper PD15-1.Google Scholar
12. Wang, P., Dawes, J. M., Dekker, P., Knowles, D. S., Piper, J. A., J. Opt. Soc. Am. B vol. 161 (1999) 63.Google Scholar
13. Fornasiero, L., Mix, E., Peters, V., Petermann, K., Huber, G., Cryst. Res. Technol. Vol. 342 (1999) 255.Google Scholar
14. Petermann, K., Huber, G., Fornasiero, L., Kuch, S., Mix, E., Peters, V., Basun, S. A., J. of Luminescence 87–89 (2000) 973 Google Scholar
15. Gaumé, R., Haumesser, P. H., Viana, B., Vivien, D., Aka, G., Ferrand, B., “Photonic Materials for the 21st Century”, May 28-31, 2000, Lyon (France).Google Scholar
16. Risk, W. P., J. Opt. Soc. Am. B vol. 57 (1988) 1412.Google Scholar
17. Taira, T., Tullier, W. M., Byer, R. L., Apple. Opt. Vol. 369 (1997) 1867.Google Scholar
18. Métrat, G., Boudeulle, M., Muhlstein, N., Brenier, A., Boulon, G., J. Cryst. Growth 197 (1999) 883.Google Scholar
19. Brenier, A., Métrat, G., Muhlsstein, N., Bourgeois, F., Boulon, G.,Optical Materials 16 (2001) 189 Google Scholar
20. McCumber, D.E.,Phys.Rev. 136 (4A) (1964) 954 Google Scholar
21. Feigelson, R. S., Kway, W.L., Route, R.K., Proc. SPIE 484 (1984) 133 Google Scholar
22. Schaack, G., Koningtein, J., J. Opt. Soc. Am., (1970), 60, 1110 Google Scholar
23. Hanic, F., Hartmova, M., Knab, G.G., Urusovskaya, A. A., Bagdasarov, K. S., Acta Cryst., (1984), B40, 76 Google Scholar
24. Aumüller, G.C., Köstler, W., Grabmaier, B.C., Frey, R., J. Phys. Chem. Solids, (1994), 55(8), 767 Google Scholar
25. Chang, N.C., Gruber, J. B., Leavitt, R.P., Morrison, C.A., J. Chem. Phys., (1982), 76(8), 3877 Google Scholar
26. Peters, V., Mix, E., Fornasiero, L., Petermann, K., Huber, G., Basun, S., LPHYS 99, Book of abstracts (1999) p.147 Google Scholar