Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:42:20.057Z Has data issue: false hasContentIssue false

Analysis of Thermal Variation of Length and Refractive Index of Lead Fluoride to Study its Optical Properties

Published online by Cambridge University Press:  21 February 2011

T. S. Aurora
Affiliation:
Department of Mathematics and Physics, Philadelphia College of Pharmacy and Science, Philadelphia, PA 19104
D. O. Pederson
Affiliation:
Department of Physics, University of Arkansas, Fayetteville, AR 72701
S. M. Day
Affiliation:
Department of Physics, Miami University, Oxford, OH 45056
Get access

Abstract

Linear thermal expansion and refractive index variation have been measured in lead fluoride with a laser interferometer as a function of temperature. Data has been analyzed using the Lorentz-Lorenz relation. Molecular polarizability, band gap, variation of refractive index with density, and strain-polarizability parameter have been studied as a function of temperature. They exhibit a small variation with temperature except near the superionic phase transition where the variation appears to be more pronounced. The results are in good agreement with the published data near room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Oberschmidt, J. and Lazarus, D., Phys. Rev. B 21, 5813 (1980).Google Scholar
2. Boyce, J. B. and Huberman, B. A., Phys. Rep. 51, 189 (1979).Google Scholar
3. Catlow, C. R. A., Comins, J. D., Germano, F. A., Harley, R. T. and Hayes, W., J.Phys. C 11, 3197 (1978).Google Scholar
4. Thomas, M. W., Chem. Phys. Lett. 40, 111 (1976).Google Scholar
5. Aurora, T. S., Ph. D. Dissertation (University of Arkansas, 1983).Google Scholar
6. Manasreh, M. O., Pederson, D. O. and Aurora, T. S., Mat. Res. Soc. Symp. Proc. 135, 309 (1989).Google Scholar
7. Aurora, T. S., Day, S. M., Duerr, T. E. and Pederson, D. O., Solid State Ionics, 5, 625 (1981).Google Scholar
8. Dworkin, A. S. and Bredig, M. A., J. Phys. Chem. 72 1277 (1968).Google Scholar
9. Schroter, W. and Nolting, J., J. de Physique Coll. C6 41, C6-20 (1980).Google Scholar
10. Findley, P. R., Wu, Z., and Walker, W. C., Phys. Rev. B 28, 4761 (1983).Google Scholar
11. Lallemand, M. and Martinet, J., Rev. Phys. Appl. 17, 111 (1982).Google Scholar
12. Vedam, K., Critical Reviews in Solid State and Materials Science 11, 1 (1983).Google Scholar
13. Guertin, R. F. and Stern, F., Phys. Rev. 134, A427 (1964).Google Scholar
14. Agarwal, L. D. and Shanker, J., Indian J. Pure Appl. Phys. 12, 85 (1974).Google Scholar
15. Shanker, J., Lashkari, A. K. G. and Sharma, O. P., Indian J. Pure Appl. Phys. 16, 578 (1978).Google Scholar
16. Aurora, T. S., Day, S. M., King, V. and Pederson, D. O., Rev. Sci. Instrum. 55, 149 (1984).Google Scholar
17. Driscoll, W. G. and Vaughan, W. (Eds.), Handbook of Optics, (McGraw-Hill, New York, 1978).Google Scholar
18. Oberschmidt, J., Phys. Rev. B 23, 5544 (1981).Google Scholar
19. Mueller, H., Phys. Rev. 47, 947 (1935).Google Scholar
20. Schmidt, E. D. D. and Vedam, K., J. Phys. Chem. Solids 27, 1563 (1966).Google Scholar
21. Burstein, E. and Smith, P. L., Proc. Indian Acad. Sci. 28A, 377 (1948).Google Scholar