Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:55:01.029Z Has data issue: false hasContentIssue false

Analysis of the Crystallization Kinetics and Microstructure of Polycrystalline Sige Films by Optical Techniques

Published online by Cambridge University Press:  10 February 2011

J. Olivares
Affiliation:
Departamento de Tecnología Electrónica, E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain
P. Martín
Affiliation:
Departamento de Física de la Materia Condensada, E.T.S.I. Industriales, Universidad de Valladolid, 47011 Valladolid, Spain
A. Rodríguez
Affiliation:
Departamento de Tecnología Electrónica, E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain
J. Sangrador
Affiliation:
Departamento de Tecnología Electrónica, E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain
O. Martínez
Affiliation:
Departamento de Física de la Materia Condensada, E.T.S.I. Industriales, Universidad de Valladolid, 47011 Valladolid, Spain
J. Jiménez
Affiliation:
Departamento de Física de la Materia Condensada, E.T.S.I. Industriales, Universidad de Valladolid, 47011 Valladolid, Spain
T. Rodríguez
Affiliation:
Departamento de Tecnología Electrónica, E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain
Get access

Abstract

In this work, two optical techniques, Raman spectroscopy and ultraviolet reflectance, have been used to characterize the solid phase crystallization kinetics and the microstructure of SiGe films deposited by LPCVD on oxidized Si wafers. The results have been compared to those obtained by X-ray diffractometry. The Ge fraction of the films (x) was in the 0−0.38 interval. The samples were crystallized at temperatures ranging from 525 to 600 °C. The crystallization kinetics follows Avrami's model. Two different behaviours have been observed depending on the Ge fraction of the films and the crystallization temperature: a) Either the three experimental techniques yield similar results, or b) the crystallization process, as monitored by UV reflectance and Raman spectroscopy, exhibits a greater incubation time than the one obtained if X-ray diffractometry is used. The results are discussed in terms of the identification of the nucleation sites, taking into account the probe depth of the different techniques and the preferred orientations of the grains. These techniques have also been used to characterize the presence of defects, the overall crystallinity and the surface roughness of the fully crystallized films. The results are correlated to the grain morphology and grain size, obtained by means of transmission electron microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yamauchi, N., Reif, R.. J. Appl. Phys. 75 (1994) 3235.Google Scholar
2. Kim, J.-W., Ryu, M.-K., Kim, K.-B., Hwang, C.-W., Bae, B. S., Han, M.-K., Kim, S.-J.. Jpn. J. Appl. Phys. 35, p. L757 (1996).Google Scholar
3. Edelman, F., Weil, R., Werner, P., Reiche, M., Beyer, W.. Phys. Stat. Sol. A 150, p. 407 (1995).Google Scholar
4. Hwang, C.-W., Ryu, M.-K., Kim, K.-B., Lee, S.-C., Kim, C.-S.. J. Appl. Phys. 77, p. 3,042 (1995).Google Scholar
5. Jelenkovic, E. V., Tong, K. Y., Sun, Z., Mak, C. L., Cheung, W. Y.. J. Vac. Sci. Technol. A 15, p. 2836 (1997).Google Scholar
6. Olivares, J., A. Rodríguez, Sangrador, J., Rodríguez, T., Ballesteros, C., Kling, A.. Thin Solid Films 337, p. 51 (1999).Google Scholar
7. Olivares, J., Sangrador, J., Rodríguez, A., Rodríguez, T.. J. Phys. IV 9, p. 321 (1999).Google Scholar
8. Olivares, J., Martín, P., Rodríguez, A., Sangrador, J., Jiménez, J., Rodríguez, T.. Thin Solid Films 354, in press (1999).Google Scholar
9. Herman, I. P., Magnotta, F.. J. Appl. Phys. 61, p. 5,118 (1987).Google Scholar
10. Lee, Seok-Woon, Jeon, Yoo-Chan, and Joo, Seung-Ki. Mat. Res. Soc. Symp. Proc. 321, p. 707 (1994).Google Scholar
11. Chiang, K. L., Dell'Occa, C. J., Schwettmann, F. N.. J. Electrochem. Soc. 126, p. 2,267 (1979).Google Scholar
12. Humlicek, J., Lukeš, F., Schmidt, E. in Handbook of Optical Constants of Solids II, edited by Palik, E. (Academic Press, San Diego, CA, 1991) pp. 607636.Google Scholar
13. King, T.-J., Saraswat, K. C.. J. Electrochem Soc. 141, p. 2,235 (1994).Google Scholar
14. Renucci, M. A., Renucci, J. B., Cardona, M., Light Scattering in Solids (Flammarion, Paris, 1971)p. 326.Google Scholar
15. Brya, W. J.; Solid St. Commun. 12, p. 253 (1973).Google Scholar