Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:39:30.817Z Has data issue: false hasContentIssue false

Analysis of Strain Compensation in Quantum Dot Embedded GaAs Solar Cells

Published online by Cambridge University Press:  01 February 2011

Christopher Bailey
Affiliation:
[email protected], Rochester Institute of Technology, NanoPower Research Laboratory, Department of Physics, 85 Lomb Memorial Drive, Rochester, NY, 14623, United States
Cory Cress
Affiliation:
[email protected], Rochester Institute of Technology, NanoPower Research Laboratory, Department of Physics, 85 Lomb Memorial Drive, Rochester, NY, 14623, United States
Ryne Raffaelle
Affiliation:
[email protected], Rochester Institute of Technology, NanoPower Research Laboratory, Department of Physics, 85 Lomb Memorial Drive, Rochester, NY, 14623, United States
Seth Hubbard
Affiliation:
[email protected], Rochester Institute of Technology, NanoPower Research Laboratory, Department of Physics, 85 Lomb Memorial Drive, Rochester, NY, 14623, United States
William Maurer
Affiliation:
[email protected], NASA Glenn Research Center, Cleveland, OH, 44135, United States
David Wilt
Affiliation:
[email protected], NASA Glenn Research Center, Cleveland, OH, 44135, United States
Sheila Bailey
Affiliation:
[email protected], NASA Glenn Research Center, Cleveland, OH, 44135, United States
Get access

Abstract

The effects of strain within stacked layers of InAs quantum dots (QDs) were investigated. InAs QD test structures with and without strain compensation (SC) were analyzed using atomic force microscopy, transmission electron microscopy, and X-ray diffraction. The affects of strain compensation on test structure morphology and on GaAs-based QD solar cell performance was studied as a function of the thickness of the SC layer. X-ray diffraction analysis of the QD embedded test structures reveals a relationship between the SC thickness and the observed crystalline quality. Air mass zero illuminated current vs. voltage data and spectral responsivity measurements were used for the solar cell comparison. When SC is employed, QD insertion shows a lower open circuit voltage, in reference to a baseline device without QDs, but leads to an enhancement in the short circuit current of the device.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bushnell, D. B., Tibbits, T. N. D., Barnham, K. W. J, Connolly, J. P., and Mazzer, M., EkinsDaukes, J., Roberts, J. S., Hill, G., and Airey, R., J. of Appl. Phys. 97, 124908 (2005).10.1063/1.1946908Google Scholar
2 Sinharoy, S., Patton, M. O.. Valko, T. M. Sr. , Weizer, V.G., Progr. In Photovoltaics: Res. & Appl. 10, 427 (2002).10.1002/pip.449Google Scholar
3 Shao, Q., Balandin, A. A., Fedoseyev, A. I., Turowski, M., Appl. Phys. Lett. 91, 163503 (2007).10.1063/1.2799172Google Scholar
4 Raffaelle, R.P., Sinharoy, S., Andersen, J., Wilt, D., Bailey, S.G., Proc. of the IEEE World Conference on Photovoltaic Energy Conversion 1, 162166 (2006).Google Scholar
5 Luque, A., Marti, A., Phys. Rev. Let. 78, pp. 50145017 (1997).10.1103/PhysRevLett.78.5014Google Scholar
6 Marti, A., Lopez, N., Antolin, E., Canovas, E., Stanley, C., Farmer, C., Cuadra, L., Luque, A., Thin Solid Fims 511–512, 638 (2006).10.1016/j.tsf.2005.12.122Google Scholar
7 Cress, C. D., Hubbard, S. M., Landi, B. J., Wilt, D. M., and Raffaelle, R. P., Appl. Phys. Lett., 91, 183108 (2007).10.1063/1.2803854Google Scholar
8 Hubbard, S.M., Wilt, D., Bailey, S., Byrnes, D., Raffaelle, R., Proc. of the IEEE World Conference on Photovoltaic Energy Conversion 1, 118 (2006).Google Scholar
9 Hubbard, S.M., Raffaelle, R., Robinson, R., Bailey, C., Wilt, D., Wolford, D., Maurer, W., Bailey, S., Mater. Res. Soc. Symp. Proc. 1017E, DD1311 (2007).Google Scholar
10 Marti, A., Lopez, N., Antolin, E., Canovas, E., Luque, A., Stanley, C., Farmer, C., Diaz, P., Appl. Phys. Lett. 90, 233510 (2007).10.1063/1.2747195Google Scholar
11 Mazzer, M., K.W.J. Barnham, Ballard, I.M., Bessiere, A., Ioannides, A., Johnson, D.C., Lynch, M.C., Tibbits, T.N.D., Roberts, J.S., Hill, G., Calder, C., Thin Solid Films 511–512, 76 (2006).10.1016/j.tsf.2005.12.120Google Scholar
12 Hubbard, S. M., Cress, C. D., Bailey, C. G., Raffaelle, R. P., Bailey, S. G., Wilt, D. M., Appl. Phys. Lett., submitted Nov. 2007.Google Scholar
13 Nuntawong, N., Birudavolu, S., Hains, C. P., Huang, S., Xu, H., and Huffaker, D. L., Appl. Phys. Lett. 85, 3050 (2004).Google Scholar
14 Krost, A., Heinrichsdorff, F., Bimberg, D., Blasing, J., Darhuber, A., Bauer, G., Cryst. Res. Technol. 34, 89 (1999).Google Scholar