Hostname: page-component-68945f75b7-55759 Total loading time: 0 Render date: 2024-09-04T18:17:22.305Z Has data issue: false hasContentIssue false

Analysis of Pulsed Excimer Laser Ablation of PZT, Pb And Ti in an Oxygen Ambient Using Energy Dispersive Mass Spectrometry

Published online by Cambridge University Press:  10 February 2011

L. G. Coccia
Affiliation:
Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC 1 E 7JE, United Kingdom.
G. C. Tyrrell
Affiliation:
Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC 1 E 7JE, United Kingdom.
I. W. Boyd
Affiliation:
Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC 1 E 7JE, United Kingdom.
Get access

Abstract

A number of factors have been identified as affecting the gas phase oxidation of cations during pulsed laser ablation of lead zirconate titanate (PZT), by using energy dispersive mass spectrometry (EDMS). These phenomena are known to be critical to the deposition of high quality thin films of PZT. However, to isolate the role of each cation species and the influence of its gas phase properties, we have also looked beyond the ablation of the PZT ceramic. In this paper, we detail our observations during pulsed laser ablation of electroceramic and metallic targets, specifically PZT, Pb and Ti. We have observed the evolution and transport of molecular species during gas phase expansion over a wide range of oxygen pressures (10−7 - 10−1 mbar) and laser fluences (0.3 -10 Jcm−2). The yields of the molecular ion species are strongly dependent upon the number density of the background gas. We propose an interpretation of the relative yields of the species based upon their respective gas phase binding energies and their ease of formation based upon the reaction thermodynamics and reaction cross-section of each species.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cheene, A., Perriere, J., Kerherve, F., Hauchecorne, G., Fogarassy, E. and Fuchs, C., Mater. Res. Soc. Symp. Proc. 191,229 (1990) J. Narayan, N. Biunno, R. Singh, O. W. Holland and O. Auciello, Appl. Phys. Lett. 51, 1845 (1987)Google Scholar
2. Herbert, J. M., Ferroelectric Transducers and Sensors (Gordon and Breach, London, 1982)Google Scholar
3. Araujo, C. A. Paz de, McMillan, L. D., Melnick, B. W., Cuchiaro, J. D. and Scott, J. F., Ferroelectrics 104, 241 (1990)Google Scholar
4. Haertling, G. H., Ferroelectrics 75, 25 (1987)Google Scholar
5. Herbert, J. M., Ceramic Dielectrics and Capacitors (Gordon and Breach, London, 1985)Google Scholar
6. Moulson, A. J. and Herbert, J. M., Electroceramics (Chapman and Hall, London, 1990)Google Scholar
7. Roy, R. A., Etzold, K.F. and Cuomo, J.J., Mater. Res. Soc. Symp. Proc. 200, 77 (1990)Google Scholar
8. Leuchtner, R. E., Horwitz, J. S. and Chrisey, D. B., Mater. Res. Soc. Symp. Proc. 243, 525 (1992)Google Scholar
9. Leuchtner, R. E., Horwitz, J. S. and Chrisey, D. B., Mater. Res. Soc. Symp. Proc. 285, 87 (1993)Google Scholar
10. Fuso, F., Vyacheslavov, L. N., Masciarelli, G. and Arimondo, E., J. Appl. Phys. 76, 8088 (1994)Google Scholar
11. Amoruso, S., Berardi, V., Dente, A., Spinelli, N., Armenante, M., Velotta, R., Fuso, F., Allegrini, M. and Arimondo, E., J. Appl. Phys. 78, 494 (1995)Google Scholar
12. Horwitz, J. S., Grabowski, K. S., Chrisey, D. B. and Leuchtner, R. E., Appl. Phys. Lett. 59, 1565 (1991)Google Scholar
13. Tyrrell, G. C., York, T. H., Coccia, L. G. and Boyd, I. W., Appl. Surf. Sci. 1996 (In press)Google Scholar
14. Coccia, L. G., Tyrrell, G. C. and Boyd, I. W., EMRS Spring Meeting (1996) (Accepted)Google Scholar
15. Coccia, L. G., Tyrrell, G. C. and Boyd, I. W., Appl. Phys. Lett. 1996 (Submitted)Google Scholar
16. Coccia, L. G., Tyrrell, G. C., Chater, R. J., Waller, D., Kilner, J. A. and Boyd, I. W., Appl. Surf. Sci. 1996 (In press)Google Scholar
17. Leuchtner, R. E. and Grabowski, K. S. in Pulsed Laser Deposition of Thin Films edited by Chrisey, D. B. and Hubler, G. K.. (Wiley Interscience, New York, 1994)Google Scholar
18. Kerr, J. A., ”Bond Strengths of Diatomic Molecules” in CRC Handbook of Physical Constants, pp 2105 (1991)Google Scholar
19. Bernstein, R. B, Chemical Dynamics via Molecular Beam and Laser Techniques pp 188. (OUP, New York 1982)Google Scholar
20. Chase, M. W. Jr.,, Davies, C. A., Downey, J. R. Jr.,, Frurip, D. J., McDonald, L. A. and Syvervd, A. N., J. Phys. Chem. Ref. Data 14, 1 (1985)Google Scholar