Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T02:36:20.731Z Has data issue: false hasContentIssue false

Analysis of Nucleation of Dislocation Loops from Stressed Surfaces Based on the Peierls-Nabarro Dislocation Model

Published online by Cambridge University Press:  21 March 2011

Guanshui Xu*
Affiliation:
Department of Mechanical Engineering University of California at Riverside Riverside, CA 92521 Phone: (909) 787-2497; Fax: (909) 787-2899; Email: [email protected]
Get access

Abstract

Nucleation of dislocation loops from stressed crystal surfaces is analyzed based on a variational boundary integral method in the Peierls-Nabarro framework. The stress dependent activation energies required to activate dislocation loops from their stable to unstable saddle point configurations are determined. Compared to previous analyses of this problem based on continuum elastic dislocation theory, the presented analysis provides more definitive solutions because it eliminates the uncertain core cutoff parameter by allowing for the existence of an extended dislocation core as the embryonic dislocation evolves. Moreover, the shape of the dislocation loop is solved by the variational principle instead of assumed to be semicircular as in previous analyses based on continuum elastic dislocation theory. It is noteworthy that the presented methodology can be readily used to study effects of surface inhomogeneities such as cracks and steps on dislocation nucleation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nix, W. D., Met. Trans., A20, 2217–25 (1989).Google Scholar
2. Freund, L. B., Int. J. Solids Struct., 37, 185–96 (2000).Google Scholar
3. Frank, F. C. and Merwe, J. H. van der, Proc. Roy. Soc., A189, 205–16 (1949).Google Scholar
4. Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth, 27, 118125 (1974).Google Scholar
5. Fitzgerald, E. A., J. Vac. Sci. Technol., B7, 782–8 (1989).Google Scholar
6. Kamat, S. V. and Hirth, J. P., J. Appl. Phys., 67, 6844–50 (1990).Google Scholar
7. Beltz, G. E. and Freund, L. B., Phys. Stat. Sol., B180, 303–13 (1993).Google Scholar
8. Freund, L. B., Adv. Appl. Mech., 30, 1994.Google Scholar
9. Vdovin, V. I., Phys. Stat. Sol., A171, 239–50 (1999).Google Scholar
10. Wagner, G., Phys. Stat. Sol., A173, 385403 (1999).Google Scholar
11. Zunger, A., MRS Bull., 23, 1553 (1998).Google Scholar
12. Cottrell, A. H., Dislocations and Plastic Flow in Crystals, Clarendon Press, Oxford (1953).Google Scholar
13. Peierls, R. E., Proc. Phys. Soc., 52, 34–7 (1940).Google Scholar
14. Nabarro, F. R. N., Proc. Phys. Soc., 59, 256–72 (1947).Google Scholar
15. Beltz, G. E. and Freund, L. B., Phil. Mag., 69, 183 (1994).Google Scholar
16. Eshelby, J. D., Phil. Mag., 40, 903912 (1949).Google Scholar
17. Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd., Wiley-Interscience, New York (1982).Google Scholar
18. Schoeck, G. and Pueschl, W., Phil. Mag., A64, 931–49 (1991).Google Scholar
19. Rice, J. R., J. Mech. Phys. Solids, 40, 239–71 (1992).Google Scholar
20. Rice, J. R. and Beltz, G. E., J. Mech. Phys. Solids, 42, 333–60 (1994).Google Scholar
21. Xu, G., Argon, A. S. and Ortiz, M., Phil. Mag., A72, 415–51 (1995).Google Scholar
22. Xu, G., Argon, A. S. and Ortiz, M., Phil. Mag., A75, 341–67 (1997).Google Scholar
23. Xu, G. and Ortiz, M., Int. J. Num. Meth. Engng., 36, 3675–701 (1993).Google Scholar
24. Xu, G., J. Appl. Mech., 67, 403408 (2000).Google Scholar
25. Xu, G. and Argon, A. S., Phil. Mag. Lett., 80, 605–11 (2000).Google Scholar
26. Lothe, J., Phil. Mag., A46, 177–80 (1982).Google Scholar
27. Rice, J. R., Beltz, G. E. and Sun, Y., “Peierls framework for dislocation nucleation from a crack tip,” in Topics in Fracture and Fatigue, edited by Argon, A.S., Springer, Berlin, 158 (1992).Google Scholar
28. Rose, J. H., Ferrante, J. and Smith, J. R., Phys. Rev. Lett., 47, 675–8 (1981).Google Scholar
29. Sun, Y., Beltz, G. E. and Rice, J. R., Mater. Sci. and Eng., A170, 67 (1993).Google Scholar
30. Christian, J. W. and Vitek, V., Rep. Prog. Phys., 33, 307411 (1970).Google Scholar
31. Vitek, V., Phil. Mag., 18, 773786 (1968).Google Scholar
32. Kaxiras, E. Duesbery, M. S., Phys. Rev. Lett., 70, 3752–5 (1993).Google Scholar