Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:45:20.088Z Has data issue: false hasContentIssue false

Analysis of Measured I(V) Relations for Electron Emission from Insulating Diamond Films on Various SI Substrates

Published online by Cambridge University Press:  10 February 2011

K. L. Jensen
Affiliation:
Code 6840, ESTD, Naval Research Laboratory, Washington, DC 20375-5000USA
A. Göhl
Affiliation:
Fachbereich Physik, Universität Wuppertal, D-42097 Wuppertal, GERMANY
G. Müller
Affiliation:
Fachbereich Physik, Universität Wuppertal, D-42097 Wuppertal, GERMANY
Get access

Abstract

In this work, we shall analyze the performance of a geometrical interface roughness model to estimate current from p-type silicon into insulating diamond and compare the performance of that model to experimental data. A minimum number of adjustable parameters are invoked. While the model qualitatively accounts for trends in the experimental data, in particular, the shift from negative to positive slope on a Fowler Nordheim plot of the I(V) data, it does so at the expense of demanding ellipsoid parameters that appear to be unreasonable. We therefore conclude that a simple geometrical field enhancement model of interface roughness is insufficient to account for the current observed, and thus the theory must be augmented by a more comprehensive electron transport model at the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Göhl, A., Raiko, V., Habermannn, T., Nau, D., Theirich, D., Müller, G., Engemann, J., “Local field emission features of oriented diamond films on various silicon substrates.” Tech. Dig. Of Int'l Conference on Vacuum Microelectronics (July 12-24, 1998, Asheville, NC) p263.Google Scholar
2. Jensen, K. L., Yater, J. E., Zaidman, E. G., Kodis, M. A., Shih, A., “Advanced emitters for next generation rf amplifiers,” JVSTB16, 2038 (1998).Google Scholar
3. Heiderhoff, R., Spitzl, R., Maywald, M., Raiko, V., Balk, L. J., Engemann, J., SPIE Proc. 59, 2151 (1994).Google Scholar
4. Nemanich, R. J., Baumann, P. K., Benjamin, M. J. et al. , Materials Issues In Vacuum Microelectronics, MRS Symposium Proceedings Vol. 509, Zhu, W., Pan, L. S., Felter, T. E., Holland, C. (eds). (MRS, Warrendale, PA, 1998), p35; R. Matsuda, K. Okano, B. B. Pate, ibid, p59; J. Robertson, ibid, p83.Google Scholar
5. See Robertson, J. in Ref. [4].Google Scholar
6. Lerner, P., Cutler, P. H., and Miskovsky, N. M., J. Phys. IV C5, 39 (1996).Google Scholar
7. Geis, M. W., Twichell, J. C., and Lysczarz, T. M., J. Vac. Sci. Technol. B14, 2060 (1996).Google Scholar
8. Forbes, R. G., Jensen, K. L., “Extension of the Fowler-Nordheim Equation Beyond the Linear Field + Classical Image Charge Potential Approximation,” (abstract submitted to the 11th International Vacuum Microelectronics Conference, Darmstadt, Germany, July 6-9, 1999).Google Scholar
9. Rhoderick, E. H., Williams, R. W., Metal Semiconductor Contacts (2ed), (Clarendon Press, Oxford, 1988), p38.Google Scholar
10. Matsuda, R., Okano, K., Pate, B., MRS Symp. Proc. Vol. 509, (1998) p59 Google Scholar