Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T08:56:18.329Z Has data issue: false hasContentIssue false

Analysis of Leakage Currents through PLD Grown Ultrathin a-LaGdO3 Based High-k Metal Gate Devices

Published online by Cambridge University Press:  28 June 2013

Shojan P. Pavunny
Affiliation:
Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, PR 00936-8377, USA.
Pankaj Misra
Affiliation:
Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, PR 00936-8377, USA.
Reji Thomas
Affiliation:
Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, PR 00936-8377, USA.
Ashok Kumar
Affiliation:
Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, PR 00936-8377, USA. Materials Physics and Engineering Division, National Physical Laboratory, CSIR, New Delhi, 110 012, India.
James F. Scott
Affiliation:
Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, PR 00936-8377, USA. Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 OHE, UK.
Ram S. Katiyar
Affiliation:
Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, PR 00936-8377, USA.
Get access

Abstract

A detailed analysis of leakage current density-gate voltage measurements of gate stacks composed of PLD grown ultra thin films of LaGdO3 (LGO) on p-type silicon substrates with 8.4 Å EOT is presented. Temperature dependent leakage measurements revealed that forward bias current was dominated by Schottky emission over trap assisted tunneling below 1.2 MV/cm and quantum mechanical tunneling above this field. The physical origin of the reverse bias current was found to be a combination of Schottky emission and trap assisted tunneling. Low leakage current densities in the range from 2.3×10-3 to 29×10-3 A/cm2 were recorded for films with EOT from 1.8 to 0.8 nm, that are at least four or more orders below the ITRS specifications and its SiO2 competitors.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Moore, G. E., Electronics Magazine 38, No. 8, April 19, (1965).Google Scholar
International Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, CA, 2010); see http:/www.itrs.net for updates.Google Scholar
Hobbs, C., Fonseca, L., Dhandapani, V., Samavedam, S., Taylor, B., Grant, J., Dip, L., Triyoso, D., Hegde, R., Gilmer, G., Garcia, R., Roan, D., Lovejoy, L., Rai, R., Hebert, L., Tseng, H., White, B., and Tobin, P., Tech. Dig. VLSI Symp. 2003, 9.Google Scholar
Fischetti, M. V., Neumayer, D. A., and Cartier, E. A., J. Appl. Phys. 90, 4587 (2001).CrossRefGoogle Scholar
Lopes, J. M. J., Roeckerath, M., Heeg, T., Rije, E., Schubert, J., Mantl, S., Afanas’ev, V. V., Shamuilia, S., Stesmans, A., Jia, Y., Schlom, D. G., Appl. Phys. Lett. 89, 222902 (2006).CrossRefGoogle Scholar
Thomas, R., Ehrhart, P., Luysberg, M., Boese, M., Waser, R., Roeckerath, M., Schubert, J., Elshocht, S. V., Caymax, M., J. Electrochem. Soc. 154, G147 (2007) .CrossRefGoogle Scholar
Pavunny, S. P., Thomas, R., Kumar, A., Murari, N. M. and Katiyar, R. S., J. Appl. Phys. 111, 102811 (2012).CrossRefGoogle Scholar
Pavunny, S. P., Thomas, R., Kumar, A., Fachini, E. and Katiyar, R. S., J. Appl. Phys. 111, 044106 (2012).CrossRefGoogle Scholar
Pavunny, S. P., Thomas, R., Murari, N. M., Schubert, J., Niessen, V., Luptak, R., Kalkur, T.S. and Katiyar, R. S., Integr. Ferroelectr. 125, 44 (2011).CrossRefGoogle Scholar
Pavunny, S. P., Thomas, R., Kumar, A., Scott, J. F. and Katiyar, R. S., ECS J. Solid State Sci. Technol. 1(4), N53 (2012).CrossRefGoogle Scholar
Pavunny, S. P., Misra, P., Thomas, R., Kumar, A., Schubert, J., Scott, J. F. and Katiyar, R. S., Appl. Phys. Lett. 102, 192904 (2013).CrossRefGoogle Scholar
Sze, S. M. and Kwok, K. Ng Physics of Semiconductor Devices, 3rd ed. Wiley, New Jersey, 2006, pp. 402404.CrossRefGoogle Scholar
Vilan, A., J. Phys. Chem. C 111, 4431 (2007).CrossRefGoogle Scholar
Mott, N. F. and Davis, E. A., Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, U.K., 1979).Google Scholar
Schuegraf, K. F. and Hu, C., IEEE Trans. Electron Devices. 41, 761 (1994).CrossRefGoogle Scholar
Lo, S. H., Buchanan, D. A., and Taur, Y., IBM J. Res. Dev. 43, 327 (1999).CrossRefGoogle Scholar