Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T06:56:09.509Z Has data issue: false hasContentIssue false

Analysis of Interface Structures by Quantitative High-Resolution Transmission Electron Microscopy

Published online by Cambridge University Press:  10 February 2011

O. Kienzle
Affiliation:
Max-Planck-Institut für Metallforschung, Seestraβe 92, 70174 Stuttgart, Germany
M. Exner
Affiliation:
Max-Planck-Institut für Metallforschung, Seestraβe 92, 70174 Stuttgart, Germany
F. Ernst
Affiliation:
Max-Planck-Institut für Metallforschung, Seestraβe 92, 70174 Stuttgart, Germany
Get access

Abstract

Quantitative evaluation rather than visual inspection of HRTEM images provides objective, reproducible, and very accurate information on the atomistic structure of internal interfaces. This paper explains the method we have developed to analyze the structure of grain boundaries. To demonstrate the power of our approach we present an analysis of the Σ3 (111) grain boundary in SrTiO3. We have determined the coordinates of the atom columns at this interface with a precision of 0.015 nm. Thus, our experimental results provide a sensitive test for physical theories and model structures obtained by computer simulation. First results of computer modeling are presented in this paper. The calculated structure of minimum energy has the same characteristic features as the structure determined by experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nadarzinski, K. and Ernst, F., Phil. Mag. A 74, 641 (1996).Google Scholar
2. Hofmann, D. and Ernst, F., Ultramicroscopy 53, 205 (1994).Google Scholar
3. Hofmann, D. and Ernst, F., Interi. Sci. 2, 201 (1994).Google Scholar
4. Stemmer, S., Streiffer, S. K., Ernst, F., Rühle, M., Phil. Mag. A 71, 713 (1995).Google Scholar
5. Ernst, F., Hofmann, D., Nadarzinski, K., Stemmer, S., Streiffer, S. K., in Inter-granular and Interphase Boundaries in Materials, edited by Ferro, A.C., Conde, E.P., Fortes, E.A. (Trans Tech Publications, Zürich, 1996), p. 23.Google Scholar
6. Möbus, G., Necker, G., Rühle, M., Ultramicroscopy 49, 46 (1993).Google Scholar
7. Möbus, G., Ultramicroscopy 65, 205 (1996).Google Scholar
8. Lehovec, K., J. Chem. Phys. 21, 1123 (1953).Google Scholar
9. Kliewer, K. L. and Koehler, J. S., Phys. Rev. A 140, 1226 (1965).Google Scholar
10. Poeppel, R. B. and Blakely, J. M., Surf. Sci. 15, 507 (1969).Google Scholar
11. Chiang, Y. M. and Takagi, T., J. Am. Ceram. Soc. 73, 3278 (1990).Google Scholar
12. Desu, S. B. and Payne, D. A., J. Am. Ceram. Soc. 73, 3391 (1990).Google Scholar
13. Yan, M. F., Cannon, R. M., Bowen, H. K., J. Appl. Phys. 54, 764 (1983).Google Scholar
14. Ikeda, J. S. and Chiang, Y. M., J. Am. Ceram. Soc. 76, 2437 (1993).Google Scholar
15. Ikeda, J. S. and Chiang, Y. M., J. Am. Ceram. Soc. 76, 2447 (1993).Google Scholar
16. Kienzle, O. and Ernst, F., J. Am. Ceram. Soc, in press.Google Scholar
17. Stadelmann, P. A., Ultramicroscopy 21, 131 (1987).Google Scholar
18. Harding, J. H., Report AERE R 13127 (Harwell Laboratory, 1988).Google Scholar
19. Gale, J. D., GULP - General Utility Lattice Program.Google Scholar
20. Akhtar, M. J., Akhtar, Z., Jackson, R. A., J. Am. Ceram. Soc. 78, 421 (1995).Google Scholar
21. Majid, I., Liu, Y., Baluffi, R. W., Sande, J. B. V., Mat. Res. Soc. Sym. Proc, this volume.Google Scholar
22. Ravikumar, V. and Dravid, V. P., Ultramicroscopy 52, 557 (1993).Google Scholar