Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:30:52.189Z Has data issue: false hasContentIssue false

Analysis of Immittance Spectroscopy Data: Model Comparisons, Universality?, and Estimation of Distributions of Activation Energies

Published online by Cambridge University Press:  10 February 2011

J. Ross Macdonald*
Affiliation:
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, [email protected]
Get access

Abstract

Immittance spectroscopy [IS] involves the measurement of the small-signal frequency response of dielectrics, semiconductors, electrolytes, biological cells, and polycrystalline, amorphous, and single-crystal electrically conducting materials. Analysis of such data to provide insight into the detailed, microscopic, physicochemical processes present in the full electrode and bulk material system is a crucial part of IS. Background information on IS and a discussion of its strengths and weaknesses are presented. The use of weighted, complex, nonlinear-least-squares for direct data fitting and for the solution of the ill-posed inversion problem of estimating continuous distributions of activation energies for important response models and for experimental data is illustrated. Replacements for the widely used, but incorrect, complexelectric- modulus data-analysis relations proposed long ago by C. T. Moynihan and associates for disordered ionic conductors, are presented and discussed. Recent proposals for various kinds of universal response behavior are examined and found to be unjustified. The present analysis methods are illustrated by applying them to 24°C data on a lithium aluminosilicate glass and to data over a wide temperature range on single-crystal CaTiO3:30%Al3+

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Macdonald, J. R., Ann. Biomed. Eng. 20 (1992) 289.Google Scholar
2. Macdonald, J. R., editor, Impedance Spectroscopy- Emphasizing Solid Materials and Systems (Wiley-Interscience, New York, 1987).Google Scholar
3. See the papers presented at the Second International Symposium on Electrochemical Impedance Spectroscopy, Electrochim. Acta 38 (1993) 17992133.Google Scholar
4. Macdonald, J. R. and Potter, L. D., Jr., Solid State Ionics 23 (1987) 61. The latest version of the LEVM fitting program may be obtained from Solartron Instruments, Farnborough, England, Attn. Brian Sayers, +44 (0) 1252 376 666, e-mail: [email protected].Google Scholar
5. Boukamp, B.A., Solid State Ionics 18/19 (1986); 20 (1986) 31.Google Scholar
6. Macdonald, J. R., J. Electroanal. Chem. 307 (1991) 1.Google Scholar
7. Macdonald, J. R., J. Chem. Phys. 102 (1995) 6241.Google Scholar
8. Boukamp, B. A. and Macdonald, J. R., Solid State Ionics 74 (1994) 85.Google Scholar
9. Boukamp, B. A., J. Electrochem. Soc. 142 (1995) 1885.Google Scholar
10. Macdonald, J. R., J. Non-Cryst. Solids, to be published in May 1996.Google Scholar
11. Macdonald, J. R., Electrochim. Acta 35 (1990) 1483.Google Scholar
12. Macdonald, J. R., J. Appl. Phys. 58 (1985) 1955,1971.Google Scholar
13. Macdonald, J. R., J. Appl. Phys. 61 (1987) 700 Google Scholar
14. Macdonald, J. R., J. Appl. Phys. 62 (1987) R51. The KWW distribution is misidentified here as a stable Lévy distribution; instead it is the characteristic function of such a distribution.Google Scholar
15. Macdonald, J. R. and Wang, J. C., Solid State Ionics 60 (1993) 319; J. R. Macdonald, J. 0Chem. Phys. 36 (1962) 345.Google Scholar
16. Macdonald, J. R., J. Electroanal. Chem. 378 (1994) 17. Replace “relation” by “relaxation” in title.Google Scholar
17. Macdonald, J. R., Solid State Ionics 25 (1987) 271.Google Scholar
18. Kohlrausch, R., Pogg. Ann. der Phys. und Chemie, (2) 91 (1854) 179; Williams, G. and D. C. Watts, Trans. Faraday Soc. 66 (1970) 80.Google Scholar
19. Macedo, P. B., Moynihan, C. T., and Bose, R., Phys. Chem. Glasses 13 (1972) 171; C. T. Moynihan, L. P. Boesch, and N. L. Laberge, ibid 14 (1973) 122.Google Scholar
20. Macdonald, J. R., submitted to Phys. Lett. A.Google Scholar
21. Bondarev, V. N. and Pikhitsa, P. V., Phys. Lett. A 196 (1994) 247.Google Scholar
22. Moynihan, C. T., J. Non-Cryst. Solids, 172–174 (1994) 1395.Google Scholar
23. Nowick, A. S. and Lim, B. S., J. Non-Cryst. Solids 172–174 (1994) 1389.Google Scholar
24. Lee, W. K., Liu, J. F., and Nowick, A. S., Phys. Rev. Lett. 67 (1991) 1559.Google Scholar
25. Lim, B. S., Vaysleyb, A. V., and Nowick, A. S., Appl. Phys. A 56 (1993) 8.Google Scholar
26. Nowick, A. S., Vaysleyb, A. V., and Lim, B. S., J. Appl. Phys. 76 (1994) 4429.Google Scholar
27. Nowick, A. S., Lim, B. S., and Vaysleyb, A. V., J. Non-Cryst. Solids 172–174 (1994) 1243.Google Scholar
28. Macdonald, J. R., Appl. Phys. A 59 (1994) 181.Google Scholar
29. Dyre, J. C., Phys. Rev. B 48 (1993) 12511.Google Scholar
30. Macdonald, J. R., submitted to J. Non-Cryst. Solids.Google Scholar
31. Elliott, S. R., Solid State Ionics 27(1988) 131.Google Scholar
32. Macdonald, J. R., Phys. Rev. B 49 (1994–11) 9428.Google Scholar