Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T15:16:42.428Z Has data issue: false hasContentIssue false

Analysis of Emission Rate Measurements in a Material Showing a Meyer-Neldel- Rule

Published online by Cambridge University Press:  01 February 2011

Richard S. Crandall*
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
Get access

Abstract

This paper presents data showing a Meyer-Neldel rule (MNR) in InGaAsN alloys. It is shown that without this knowledge, significant errors can be made using Deep-Level Transient-Spectroscopy (DLTS) emission data to determine capture cross sections. The errors arise because of the neglect of significant transition entropy changes associated with multiphonon excitation of charge from deep traps. Ignoring the entropy change results in cross section values ranging over five orders-of-magnitude in InGaAsN alloys and 18 orders-of-magnitude in CuInGaSe alloys. Only by correctly accounting for the MNR and the accompanying entropy changes in analyzing the DLTS data will the correct value of the cross section be obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lang, D.V., J. Appl. Phys. 45, 3023 (1974).Google Scholar
2. Johnston, S., Crandall, R.S., and Yelon, A., Appl. Phys. Lett. 83, 908 (2003).Google Scholar
3. Engstrom, O. and Alm, A., Solid-State Electron. 21, 1571 (1978).Google Scholar
4. Lang, D.V., et al., Phys. Rev. B 22, 3917 (1980).Google Scholar
5. Crandall, R.S., Phys Rev. B 66, 195210 (2002).Google Scholar
6. Meyer, W. and Neldel, H., Z. Tech. Phys. 12, 588 (1937).Google Scholar
7. Constable, F.H., Proc. R. Soc. London, Ser. A 108, 355 (1925).Google Scholar
8. Crandall, R.S., Phys. Rev. B. 43, 4057 (1991).Google Scholar
9. Abushamu, J. 2002, private communicationGoogle Scholar
10. Fortner, J., Karpov, V.G., and Saboungi, M., Appl. Phys. Lett. 66, 997 (1995).Google Scholar
11. Rosenberg, B., et al., Nature 37, 1425 (1971).Google Scholar
12. Keyes, R.W., J Chem Phys 29, 467 (1958).Google Scholar
13. Yelon, A., Movaghar, B., and Branz, H.M., Phys. Rev. B 46, 12244 (1992).Google Scholar
14. Peacock-Lopez, E. and Suhl, H., Phys. Rev. B 26, 3774 (1982).Google Scholar
15. Yelon, A. and Movaghar, B., Phys. Rev. Lett. 65, 618 (1990).Google Scholar
16. Brehme, S., Krispin, P., and Lubyshev, D.I., Semicond Sci Technol 7, 467 (1992).Google Scholar
17. Johnston, S.W., et al. Deep-level transient spectroscopy in InGaAsN lattice-matched to GaAs. in 29th IEEE Photovoltaic Specialists Conference. 2002. New Orleans, LA. 1073, (2002)Google Scholar
18. Kaplar, R.J., et al., Appl Phys Lett 80, 4777 (2002).Google Scholar
19. Kaplar, R.J., et al., J Appl Phys 90, 3405 (2001).Google Scholar
20. Kaplar, R.J., et al., Solar Energ Mater Solar Cells 69, 85 (2001).Google Scholar
21. Krispin, P., Asghar, M., and Knauer, A., Physica B 274, 815 (1999).Google Scholar
22. Krispin, P., Hey, R., and Kostial, H., J Appl Phys 77, 5773 (1995).Google Scholar
23. Krispin, P. and Kostial, H., Phys Status Solidi B-Basic Re 194, 145 (1996).Google Scholar
24. Krispin, P., et al., J Appl Phys 89, 6294 (2001).Google Scholar
25. Kwon, D., et al., Appl Phys Lett 74, 2830 (1999).Google Scholar
26. VanVechten, J.A. and Thurmond, C.D., Phys Rev B 14, 3539 (1976).Google Scholar
27. Henry, C.H. and Lang, D.V., Phys Rev B 15, 989 (1977).Google Scholar
28. Rose, A., Concepts in Photoconductivity and Allied Problems, ed. Kreiger, R.E.. 1978, Huntington, NY.Google Scholar
29. Crandall, R.S., Phys. Rev. 138, 1242 (1965).Google Scholar
30. Johnston, S. 2003., private communicationGoogle Scholar