Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:27:14.477Z Has data issue: false hasContentIssue false

Analysis and Modification of Amorphous and Partially-Crystalline Thin Films

Published online by Cambridge University Press:  10 February 2011

N. J. DiNardo
Affiliation:
Department of Physics, Drexel University, Philadelphia, PA
T. W. Mercer
Affiliation:
Department of Physics, Drexel University, Philadelphia, PA
L. J. Martinez-Miranda
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland College Park, MD
M. P. Siegal
Affiliation:
Sandia National Laboratories, Albuquerque, NM
T. A. Friedmann
Affiliation:
Sandia National Laboratories, Albuquerque, NM
J. P. Sullivan
Affiliation:
Sandia National Laboratories, Albuquerque, NM
R. V. Plank
Affiliation:
Department of Chemical Engineering, University of Pennsylvania, Philadelphia, PA
J. M. Vohs
Affiliation:
Department of Chemical Engineering, University of Pennsylvania, Philadelphia, PA
Get access

Abstract

Thin films of light atomic weight elements in amorphous, partially-crystalline, or crystalline forms have applications in a broad range of technologies. For example, amorphous tetrahedral carbon (a-tC) and polymeric thin films impact electronic materials technology as electron- and light-emitting device elements, respectively. A lack of crystallinity introduces complexity in the experimental and theoretical characterization of these materials but is not necessarily a limiting factor in their performance. While the growth process is clearly a major factor governing the physical properties of a film, interactions with the substrate are also important, so surface and interface analysis provides an important complement to bulk measurements. Currently, the fundamental and applied aspects of the atomic, electronic and vibrational structure of these complex materials are being elucidated by novel approaches combining several experimental techniques with theoretical calculations. This paper focuses on several approaches in the characterization and modification of thin films made possible by recent experimental advances. The structural and electronic properties of two model systems are considered as examples: a-tC thin films grown by pulsed laser deposition (PLD) and poly aniline thin films grown by vapor deposition. First, scanning probe microscopies and x-ray scattering are used to investigate the structural aspects of a-tC films as a function of PLD growth conditions. The possible connection of nanoscale surface modification and characterization with electron emission properties will be discussed. Second, the results of inelastic scattering spectroscopy and other surface techniques will be discussed to obtain information on both interfacial aspects of the growth of polyaniline thin films and microscopic and macroscopic aspects of electrical conductivity upon doping. Comparisons will be made with other studies that address properties of analogous crystalline systems as appropriate. A brief assessment of the broader problem of analyzing these systems will be given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Siegal, M. P., Friedmann, T. A., Kurtz, S. R., Tallant, D. R., Simpson, R. L., Dominguez, F. and McCarty, K. F., in Mater. Res. Soc. Proc. (Materials Research Society, San Francisco, 1994), pp. 507.Google Scholar
2. Pappas, D. L., Saenger, K. L., Bruley, J., Krakow, W. and Cuomo, J. J., J. Appl. Phys. 21, 5675 (1992).Google Scholar
3. Lossy, R., Pappas, D. L., Roy, R. A., Cuomo, J. J. and Sura, V. M., Appl. Phys. Lett. 6l, 171 (1992).Google Scholar
4. Schultz, P. A. and Stechel, E. B., Phys. Rev. B, in press.Google Scholar
5. Xie, C., Kumar, N., Collins, C. B., Lee, T. J., Schmidt, H. and Wagal, S., Proc. International Vacuum Microelectronics Conference, RI, USA (1993).Google Scholar
6. Talin, A. A., Felter, T. E., Friedmann, T. A., Sullivan, J. P. and Siegal, M. P., J. Vac. Sci. Technol. A13. 1719 (1996).Google Scholar
7. Missert, N., Friedmann, T. A., Sullivan, J. P. and Copeland, R. G., Appl. Phys. Lett. 70, 1995 (1997).Google Scholar
8. DiNardo, N. J., Nanoscale Characterization of Surfaces and Interfaces (VCH, Weinheim, 1994).Google Scholar
9. Mercer, T. W., DiNardo, N. J., Martinez-Miranda, L. J., Fang, F., Friedmann, T. A., Sullivan, J. P. and Siegal, M. P., in Materials Research Society Symposium on Microcrystalline and Nanocrystalline Semiconductors Collins, C. B., Tsai, C. C., Hirose, M., Koch, F., Brus, L., Eds. (Materials Research Society, Boston, MA, 1994), pp. 863.Google Scholar
10. Galli, G., Martin, R. M., Car, R. and Parrinello, M., Phys. Rev. Lett. 62, 555 (1989).Google Scholar
11. Collins, C. B., Davanloo, F., Jander, D. R., Lee, T. J., You, J. H., Park, H., Pivin, J. C., Glejbøl, K. and Thölén, A. R., J. Appl. Phys. 72, 239 (1992).Google Scholar
12. Merkulov, V. I., Lannin, J. S., Munro, C. H., Asher, S. A., Veerasamy, V. S. and Milne, W. I., Phys. Rev. Lett. 78, 4869 (1997).Google Scholar
13. Ibach, H. and Mills, D. L., Electron Energy Loss Spectroscopy and Surface Vibrations (Academic Press, New York, 1982).Google Scholar
14. Lopinski, G. P., Merkulov, V. I. and Lannin, J. S., Appl. Phys. Lett. 69, 3348 (1996).Google Scholar
15. Lopinski, G. P. and Lannin, J. S., Appl. Phys. Lett. 69, 2400 (1996).Google Scholar
16. Ibach, H., Balden, M., Bruchmann, D. and Lehwald, S., Surf. Sci. 269/270. 94 (1992).Google Scholar
17. Plank, R., DiNardo, N. J. and Vohs, J. M., Phys. Rev. B (Rapid Comm.) 55, 10241 (1996).Google Scholar
18. Plank, R. V., DiNardo, N. J. and Vohs, J. M., Chem. Phys. Lett. 263, 33 (1996).Google Scholar
19. DiNardo, N. J., Demuth, J. E. and Clarke, T. C., J. Chem. Phys. 85, 6739 (1986).Google Scholar
20. DiNardo, N. J., Demuth, J. E. and Clarke, T. C., Chem. Phys. Lett. 121, 239 (1985).Google Scholar
21. Plank, R. V., Vohs, J. M. and DiNardo, N. J., J. Vac. Sci. Techol. A 15, 538 (1997).Google Scholar
22. Plank, R., DiNardo, N. J. and Vohs, J. M., Surf. Sci. Lett. 340, L971 (1995).Google Scholar
23. Epstein, A. J., Joo, J., Kohlman, R. S., Du, G., MacDiarmid, A. G., Oh, E. J., Min, Y., Tsukamoto, J., Kaneko, H. and Pouget, J. P., Synthetic Metals 65, 149 (1994).Google Scholar