Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:02:28.874Z Has data issue: false hasContentIssue false

An Overview of Lithium-Ion Battery Cathode Materials

Published online by Cambridge University Press:  30 August 2011

Yixu Wang
Affiliation:
Department of Mechanical and Aerospace Engineering North Carolina State University R3002, EB3, 911 Oval Drive, Raleigh, NC 27695
Hsiao-Ying Shadow Huang
Affiliation:
Department of Mechanical and Aerospace Engineering North Carolina State University R3002, EB3, 911 Oval Drive, Raleigh, NC 27695
Get access

Abstract

The need for the development and deployment of reliable and efficient energy storage devices, such as lithium-ion rechargeable batteries, is becoming increasingly important due to the scarcity of petroleum. In this work, we provide an overview of commercially available cathode materials for Li-ion rechargeable batteries and focus on characteristics that give rise to optimal energy storage systems for future transportation modes. The study shows that the development of lithium-iron-phosphate (LiFePO4) batteries promises an alternative to conventional lithiumion batteries, with their potential for high energy capacity and power density, improved safety, and reduced cost. This work contributes to the fundamental knowledge of lithium-ion battery cathode materials and helps with the design of better rechargeable batteries, and thus leads to economic and environmental benefits.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. U.S. Department of Energy., “Monthly Energy Review,” Rep. No. DOE/EIA-0035(2010/12) (U.S. Energy Administration, Office of Energy Statistics, U.S. Department of Energy, Washington, DC 20585, 2010).Google Scholar
2. U.S. Department of Energy., “Emissions of Greenhouse Gases in the United States, 2008,” Rep. No. DOE/EIA-0573(2008) (U.S. Energy Administration, Office of Energy Statistics, U.S. Department of Energy, Washington, DC 20585, 2009).Google Scholar
3. Ibrahim, H., Ilinca, A., Perron, J., Renewable and Sustainable Energy Reviews 12, 1221 (2008).Google Scholar
4. Cleveland, Cutler J., Encyclopedia of Energy (Elsevier, New York, 2004).Google Scholar
5. Kurzweil, P., in Encyclopedia of Electrochemical Power Sources, Garche, Jürgen, Ed. (Elsevier, Amsterdam, 2009), pp. 607633.Google Scholar
6. Gao, X. P., Yang, H. X., Energy Environ. Sci. 3, 174 (2010).Google Scholar
7. Takahashi, Y. et al. , J. Electrochem. Soc. 155, 537 (2008).Google Scholar
8. Choi, K., Jeon, J., Park, H., Lee, S., J. Power Sources 195, 8317 (2010).Google Scholar
9. Huang, Y., Li, J., Jia, D., J. Nanoparticle Research 6, 533 (2004).Google Scholar
10. Liu, H., Tang, D., Russian J. Electrochem. 45, 762 (2009).Google Scholar
11. Han, C., Kim, J., Paeng, S., Kwak, D., Sung, Y., Thin Solid Films 517, 4215 (2009).Google Scholar
12. Fu, X. et al. , J. Solid State Electrochem. 14, 1117 (2010).Google Scholar
13. Padhi, A. K., Nanjundaswamy, K. S., Goodenough, J. B., J. Electrochem. Soc. 144, 1188 (1997).Google Scholar
14. Tarascon, J., Armand, M., Nature 414, 359 (2001).Google Scholar
15. Gaubicher, J., Le Mercier, T., Chabre, Y., Angenault, J., Quarton, M., J. Electrochem. Soc. 146, 4375 (1999).Google Scholar
16. Amine, K., Yasuda, H., Yamachi, M., Electrochem. Solid State Lett. 3, 178 (2000).Google Scholar
17. Huang, H., Yin, S., Nazar, L., Electrochem. Solid State Lett. 4, A170 (2001).Google Scholar
18. Yang, S., Song, Y., Zavalij, P., Whittingham, M., Electrochem. Commun. 4, 239 (2002).Google Scholar
19. Yamada, A. et al. , Nat. Mater. 5, 357 (2006).Google Scholar
20. Chung, S., Bloking, J., Chiang, Y., Nat. Mater. 1, 123 (2002).Google Scholar
21. Malik, R., Zhou, F., Ceder, G., Nat. Mater. 10, 587 (2011).Google Scholar
22. Cheon, S. E. et al. , Electrochim. Acta 46, 599 (2000).Google Scholar
23. Shaju, K. M., Bruce, P. G., Chem. Mater. 20, 5562 (2008).Google Scholar
24. U.S. Advanced Battery Consortium, "EV Battery Test Procedurs Manual: Appendix G - USABC criteria for advanced battery technologies," (2006).Google Scholar
25. Pasquier, A. D., Plitz, I., Gural, J., Badway, F., Amatucci, G. G., J. Power Sources 136, 160 (2004).Google Scholar
26. Lu, W., Lee, C. W., Venkatachalapathy, R., Prakash, J., J. Appl. Electrochem. 30, 1119 (2000).Google Scholar
27. Chen, Y. H., Tang, Z. Y., Lu, X. H., Tan, C. Y., Prog. Chem. 18, 823 (2006).Google Scholar
28. Xia, Y., Fujieda, T., Tatsumi, K., Prosini, P. P., Sakai, T., J. Power Sources 92, 234 (2001).Google Scholar
29. Chang, H., Wu, H., Wu, N., Electrochemistry Communications 10, 1823 (2008).Google Scholar
30. Shim, J., Striebel, K. A., J. Power Sources 119, 955 (2003).Google Scholar
31. DiLeo, R. A. et al. , ACS Nano 4, 6121 (2010).Google Scholar