Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:43:28.591Z Has data issue: false hasContentIssue false

An Investigation of the Structural Strains and the Breakdown of Poisson'S Effect in Lattice-Mismatched BCC(110)/FCC(111) Metallic Superlattices

Published online by Cambridge University Press:  25 February 2011

A. Fartash
Affiliation:
Texas Center for Superconductivity and Department of Physics, Univ. of Houston, Houston, TX 77204
Ivan K. Schuller
Affiliation:
Department of Physics 0319, Univ. of California, San Diego, La Jolla, CA 92093
M. Grimsditch
Affiliation:
Materials Science Division, Argonne National Lab., Argonne, IL 60439
Get access

Abstract

The strain profiles of individual layers of a selected group of stable bcc(110)/fcc(111) metallic superlattices which have been determined by x-ray diffraction methods are compared, and discussed in terms of a number of mechanisms proposed for explaining their anomalous properties. The superlattices in this group are distinguished in terms of a highly anisotropic lattice spacing mismatch of their adjoining bcc and fcc layers (∼20% vs. 3%). The most prominent structural feature of the bcc layers consists of a highly anisotropic in-plane contraction accompanied with a small out-of-plane strain. The fee layers are found to show large out-of-plane expansions which based on their small in-plane expansions cannot be explained within framework of standard elasticity theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Van Der Merwe, J. H. and Braun, M. W. H., Mat. Res. Symp. Proc. 77, 133 (1987).Google Scholar
2. Masuda, K., Hamada, N. and Terakura, K., Phys, J.. F: Met. Phys. 14, 47 (1984).Google Scholar
3. Locquet, J. P., Neerinck, D., Stockman, L., Bruynseraede, Y. and Schuller, I. K., Phys. Rev. B 38, 3572 (1988).CrossRefGoogle Scholar
4. Fartash, A., Grimsditch, M., Fullerton, E. and Schuller, I.K., Phys. Rev. B (in press).Google Scholar
5. Fullerton, E. E., Schuller, I. K., Vanderstraeten, H. and Bruynseraede, Y., Phys. Rev. B 45, 9292(1992).Google Scholar
6. Fullerton, E. E., Kumar, S., Grimsditch, M., Kelly, D. and Schuller, I. K., Phys. Rev. B (submitted).Google Scholar
7. Banerjee, I., Yang, Q., Falco, C. and Schuller, I. K., Phys. Rev. B 28, 5037 (1983).Google Scholar
8. Khan, M. R., Chun, C. S. L., Felcher, G.P., Grimsditch, M., Kueny, A., Falco, C. M. and Schuller, I. K., Phys. Rev. B 27, 7186 (1983).Google Scholar
9. Ramirez, R., Rahman, A. and Schuller, I. K., Phys. Rev. B 30, 6208 (1984).Google Scholar
10. Schuller, I. K., Fartash, A., Fullerton, E. E. and Grimsditch, M., Mat. Res. Soc. Symp. Proc. 239, 499 (1992).Google Scholar
11. Schuller, I. K., Fullerton, E. E., Vanderstraeten, H. and Bruynseraede, Y., Mat. Res. Soc. Symp. Proc. 229, 41 (1991).Google Scholar
12. McWhan, D. B., Gurvitch, M., Rowell, J. M. and Walker, L. R., J. Appl. Phys. 54, 3886(1983).Google Scholar
13. Fartash, A., Fullerton, E. E., Schuller, I. K., Bobbin, S. E., Wagner, J. W., Cammarata, R., Kumar, S. and Grimsditch, M., Phys. Rev. B 44, 13760 (1991).Google Scholar
14. Dutcher, J. R., Lee, S., Kim, J., Stegeman, G. I., and Falco, C. M., Phys. Rev. Lett. 65, 1231 (1990).Google Scholar
15. Axon, H. J. and Hume-Rothery, W., Proc. R.Soc. (London), Ser. A 193, 1 (1948).Google Scholar
16. Homma, H., Chun, C., Zheng, G. and Schuller, I. K., Phys. Rev. B 33, 3562 (1986).Google Scholar
17. van Lueken, H., Lodder, A. and de Groot, R., J. Phys. Condens. Mat. 3, 7651 (1991).Google Scholar