Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T22:59:44.250Z Has data issue: false hasContentIssue false

An Investigation of Grain Refinement in Deeply Undercooled Alloy Droplets Using Texture Analysis

Published online by Cambridge University Press:  21 February 2011

A.F. Norman
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, U.K.
F. Gärtner
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, U.K.
K. Eckler
Affiliation:
Institut für Raumsimulation, DLR, Linder Höhe, D-51140 Köln, Germany
A. Zambon
Affiliation:
Dipartimento di Innovazione Meccanica e Gestionale, Università di Padova, Via Marzolo 9, 35131 Padova, Italy
A.L. Greer
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, U.K.
E. Ramous
Affiliation:
Dipartimento di Innovazione Meccanica e Gestionale, Università di Padova, Via Marzolo 9, 35131 Padova, Italy
D.M. Herlach
Affiliation:
Institut für Raumsimulation, DLR, Linder Höhe, D-51140 Köln, Germany
Get access

Abstract

For Cu - 30 at.% Ni droplets processed by containerless solidification under lévitation, the crystallographic texture correlates strongly with the microstructure seen in optical metallography and with the undercooling at which solidification started. The variation in texture is useful in understanding the development of the microstructure, in particular at the extremes of the undercooling range where grain-refined microstructures are observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Willnecker, R., Herlach, D.M. and Feuerbacher, B., Mater. Sci. Eng., 98, 85 (1988).Google Scholar
2 Munitz, A. and Abbaschian, G.J., in Undercooled Alloy Phases, edited by Collings, E.W. and Koch, C.C. (The Metall. Soc, Warrendale, 1986) p. 23.Google Scholar
3 Willnecker, R., Herlach, D.M. and Feuerbacher, B., Appl. Phys. Lett., 56, 324 (1990).Google Scholar
4 Greer, A.L., Mater. Sci. Eng., A133, 16 (1991).Google Scholar
5 Hunt, J.D. and Jackson, K.A., J. Appl. Phys., 37, 254 (1966).Google Scholar
6 Cochrane, R.F., Herlach, D.M. and Feuerbacher, B., Mater. Sci. Eng., A133, 706 (1991).Google Scholar
7 Schwarz, M., Karma, A., Eckler, K. and Herlach, D.M., Phys. Rev. Lett., 73, 1380 (1994).Google Scholar
8 Eckler, K., Schwarz, M., Karma, A. and Herlach, D.M., in Proceedings of the 2nd International Conference on Solidification and Gravity. Miskolc, Hungary, 1995. To be published by Trans. Tech. Publications Ltd.Google Scholar
9 Norman, A.F. and Greer, A.L., Materials Science Forum, 179–181, 707 (1995).Google Scholar
10 Garcia-Escorial, A., Casado, C., Gärtner, F., Norman, A.F. and Greer, A.L., in Proceedings of the IV International Workshop on Non-Crystalline Solids. Madrid, Spain, edited by M. Vázquez and A. Hernando, (World Scientific, 1995) p. 140.Google Scholar
11 Herlach, D.M., Annu. Rev. Mater. Sci., 21, 23 (1991).Google Scholar
12 Gärtner, F., Norman, A.F. and Greer, A.L., as for [8].Google Scholar
13 Caesar, C., Köster, V., Willnecker, R. and Herlach, D.M., Mater. Sci. Eng., 98, 339 (1988).Google Scholar
14 Willnecker, R., Herlach, D.M. and Feuerbacher, B., Phys. Rev. Lett., 62, 2707 (1989).Google Scholar
15 Ovsienko, D.E., Maslow, B.B. and Dneprenko, B.N., Russ. Met., 4, 142 (1979).Google Scholar