Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T13:48:51.527Z Has data issue: false hasContentIssue false

An Integral Equation based Numerical Solution for Nanoparticles Illuminated with Collimated and Focused Light

Published online by Cambridge University Press:  31 January 2011

Kursat Sendur*
Affiliation:
[email protected], Sabanci University, Istanbul, Turkey
Get access

Abstract

An integral equation based numerical solution is developed when the particles are illuminated with collimated and focused incident beams. The solution procedure uses the method of weighted residuals, in which the integral equation is reduced to a matrix equation and then solved for the unknown electric field distribution. In the solution procedure, the effects of the surrounding medium and boundaries are taken into account using a Green’s function formulation. Therefore, there is no additional error due to artificial boundary conditions unlike differential equation based techniques, such as finite difference time domain and finite element method. In this formulation, only the scattering nano-particle is discretized. The results are compared to the analytical Mie series solution for spherical particles, as well as to the finite element method for rectangular metallic particles. The Richards-Wolf vector field equations are combined with the integral equation based formulation to model the interaction of nanoparticles with linearly and radially polarized incident focused beams.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Milster, T. D., “Horizons for optical data storage,” Optics and Photonics News 16, 2832 (2005).Google Scholar
2 Rottmayer, R. E., Batra, S., Buechel, D., Challener, W. A., Hohlfeld, J., Kubota, Y., Li, L., Lu, B., Mihalcea, C., Mountfield, K., Pelhos, K., Peng, C., Rausch, T., Seigler, M. A., Weller, D., and Yang, X., IEEE Trans. Magn. 42, 24172421 (2006).Google Scholar
3 Hartschuh, A., Sanchez, E. J., Xie, X. S., and Novonty, L., Phys. Rev. Lett. 90, 095503 (2003).Google Scholar
4 Wang, L. and Xu, X., J. Microsc. 229, 483489 (2008).Google Scholar
5 Liedberg, B., Nylander, C., Lundstroem, I., Sens. Actuators 4, 299304 (1983).Google Scholar
6 Challener, W. A., Sendur, I. K., and Peng, C., Opt. Express 11, 31603170 (2003).Google Scholar
7 Krug, J. T. II, Sánchez, E. J., and Xie, X. S., J. Chem. Phys. 116, 10895 (2002).Google Scholar
8 Yamaguchi, T., Electron. Lett. 44, 4455427 (2008).Google Scholar
9 Yamaguchi, T. and Hinata, T., Opt. Express 15, 1148111491 (2007).Google Scholar
10 Liu, L. and He, S., Appl. Opt. 44, 34293437 (2005).Google Scholar
11 Grosges, T., Vial, A., and Barchiesi, D., Opt. Express 13, 84838497 (2005).Google Scholar
12 Sendur, K., Challener, W., and Peng, C., J. Appl. Phys. 96, 27432752 (2004).Google Scholar
13 Kottmann, J. P. and Martin, O. J. F., Opt. Express 8, 655663 (2001).Google Scholar
14 Kottmann, J. P. and Martin, O. J. F., IEEE Trans. Antennas Propag. 48, 17191726 (2000).Google Scholar
15 Kottmann, J. P., Martin, O. J. F., Smith, D. R., and Schultz, S., Chem. Phys. Lett. 341, 16 (2001).Google Scholar
16 Kottmann, J. P., Martin, O. J. F., Smith, D. R., and Schultz, S., New J. Phys. 2, 27 (2000).Google Scholar
17 Jung, J. and Sondergaard, T., Phys. Rev. B 77, 245310 (2008).Google Scholar
18 Abajo, F. J. Garcia de and Howie, A., Phys. Rev. B 65, 115418 (2002).Google Scholar
19 Myroshnychenko, V. et al., Adv. Mater. 20, 42884293 (2008).Google Scholar
20 Myroshnychenko, V. et al., Chem. Soc. Rev. 37, 17921805 (2008).Google Scholar
21 Richmond, J. H., Proc. IEEE 53, 796804 (1965).Google Scholar
22 Harrington, R. F., Proc. IEEE 55, 136149 (1967).Google Scholar
23 Harrington, R. F., Field Computation by Moment Methods, (IEEE Press, New York, NY, 1993).Google Scholar
24 Miller, E. K., Medgyesi-Mitschang, L., and Newman, E. H., Eds., Computational Electromagnetics (IEEE Press, New York, NY, 1992).Google Scholar
25 Hansen, R. C., Ed., Moment Methods in Antennas and Scattering, (Artech, Boston, MA, 1990).Google Scholar
26 Glisson, A. W. and Wilton, D. R., IEEE Trans. Antennas Propag. 28, 593603 (1982).Google Scholar
27 Rao, S. M., Wilton, D. R., and Glisson, A. W., IEEE Trans. Antennas Propag. 30, 409418 (1982).Google Scholar
28 Wolf, E., Philos. Trans. R. Soc. London Ser. A 253, 349357 (1959).Google Scholar
29 Richards, B. and Wolf, E., Philos. Trans. R. Soc. London Ser. A 253, 358379 (1959).Google Scholar