Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:17:18.667Z Has data issue: false hasContentIssue false

An Improved Triple-Tandem Organic Solar Cell

Published online by Cambridge University Press:  31 January 2011

Dewei Zhao
Affiliation:
[email protected][email protected], School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
Xiao Wei Sun
Affiliation:
[email protected], School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
Lin Ke
Affiliation:
[email protected], Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
Swee Tiam Tan
Affiliation:
[email protected], Institute of Microelectronics, Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
Get access

Abstract

We present an efficient polymer-small molecule triple-tandem organic solar cell (OSC), consisting of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM) bulk heterojunction as the first and second cells, and small molecules copper phthalocyanine (CuPc) and fullerene (C60) as the third cell on top. These sub-cells are connected by an intermediate layer of Al(1 nm)/MoO3(15 nm), which appears to be highly transparent, structurally smooth, and electrically functional. Compared to our previous all polymer triple-tandem organic solar cells (2.03%), this polymer-small molecule triple-tandem organic solar cell achieves an improved power conversion efficiency of 2.18% with a short-circuit current density (Jsc) = 3.02 mA/cm2, open-circuit voltage (Voc) = 1.51 V, and fill factor (FF) = 47.7% under simulated solar irradiation of 100 mW/cm2 (AM1.5G), which can be attributed to the increased photocurrent generation in the third cell since the third cell has the complementary absorption with two bottom cells despite a slightly reduced Voc.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kim, K., Liu, J., Namboothiry, M. A. G. and Carroll, D. L., Appl. Phys. Lett . 90 (16), 163511 (2007).Google Scholar
2 Ma, W. L., Yang, C. Y., Gong, X., Lee, K. and Heeger, A. J., Adv. Funct. Mater. 15 (10), 16171622 (2005).Google Scholar
3 Reyes-Reyes, M., Kim, K. and Carroll, D. L., Appl. Phys. Lett. 87 (8), 083506 (2005).Google Scholar
4 Chan, M. Y., Lai, S. L., Fung, M. K., Lee, C. S. and Lee, S. T., Appl. Phys. Lett. 90 (8), 023504 (2007).Google Scholar
5 Park, S. H., Roy, A., Beaupre, S., Cho, S., Coates, N., Moon, J. S., Moses, D., Leclerc, M., Lee, K. and Heeger, A. J., Nature Photonics 3 (5), 297–U5 (2009).Google Scholar
6 Xue, J. G., Uchida, S., Rand, B. P. and Forrest, S. R., Appl. Phys. Lett. 85 (23), 57575759 (2004).Google Scholar
7 Hadipour, A., de, B. Boer, Wildeman, J., Kooistra, F. B., Hummelen, J. C., Turbiez, M. G. R., Wienk, M. M., Janssen, R. A. J. and Blom, P. W. M., Adv. Funct. Mater. 16 (14), 18971903 (2006).Google Scholar
8 Colsmann, A., Junge, J., Kayser, C. and Lemmer, U., Appl. Phys. Lett. 89 (20), 203506 (2006).Google Scholar
9 Janssen, A. G. F., Riedl, T., Hamwi, S., Johannes, H. H. and Kowalsky, W., Appl. Phys. Lett. 91 (7), 073519 (2007).Google Scholar
10 Dennler, G., Prall, H. J., Koeppe, R., Egginger, M., Autengruber, R. and Sariciftci, N. S., Appl. Phys. Lett. 89 (7), 073502 (2006).Google Scholar
11 Kim, J. Y., Lee, K., Coates, N. E., Moses, D., Nguyen, T. Q., M. Dante and Heeger, A. J., Science 317 (5835), 222225 (2007).Google Scholar
12 Zhao, D. W., Sun, X. W., Jiang, C. Y., Kyaw, A. K. K., Lo, G. Q. and Kwong, D. L., Appl. Phys. Lett. 93 083305 (2008).Google Scholar
13 Zhao, D. W., Sun, X. W., Jiang, C. Y., Kyaw, A. K. K., Lo, G. Q. and Kwong, D. L., IEEE Electron Device Lett. 30 (5), 490492 (2009).Google Scholar
14 Shrotriya, V., Wu, E. H. E., Li, G., Yao, Y. and Yang, Y., Appl. Phys. Lett. 88 (6), 064104 (2006).Google Scholar
15 Kawano, K., Ito, N., Nishimori, T. and Sakai, J., Appl. Phys. Lett. 88 (7), 073514 (2006).Google Scholar
16 Gilot, J., Wienk, M. M. and Janssen, R. A. J., Appl. Phys. Lett. 90 (14), 143512 (2007).Google Scholar