Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T02:32:17.708Z Has data issue: false hasContentIssue false

An imaging CdZnTe detector with coplanar orthogonal anode strips

Published online by Cambridge University Press:  10 February 2011

L. A. Hamel
Affiliation:
Groupe de recherche en physique et technologie des couches minces (GCM), University of Montreal, Montreal, H3C 3J7, Canada
O. Tousignant
Affiliation:
Groupe de recherche en physique et technologie des couches minces (GCM), University of Montreal, Montreal, H3C 3J7, Canada
M. Couillard
Affiliation:
Groupe de recherche en physique et technologie des couches minces (GCM), University of Montreal, Montreal, H3C 3J7, Canada
J. F. Courville
Affiliation:
Groupe de recherche en physique et technologie des couches minces (GCM), University of Montreal, Montreal, H3C 3J7, Canada
V. T. Jordanov
Affiliation:
Consultant, Durham, NH 03824, USA.
J. R. Macri
Affiliation:
Space Science Center, University of New Hampshire Durham, NH 03824, USA.
K. Larson
Affiliation:
Space Science Center, University of New Hampshire Durham, NH 03824, USA.
M. Mayer
Affiliation:
Space Science Center, University of New Hampshire Durham, NH 03824, USA.
M. L. McConnell
Affiliation:
Space Science Center, University of New Hampshire Durham, NH 03824, USA.
J. M. Ryan
Affiliation:
Space Science Center, University of New Hampshire Durham, NH 03824, USA.
Get access

Abstract

A novel electrode configuration for CZT imaging devices is presented. It is made of focusing, non-collecting anode strips, in one dimension, and collecting anode pixels, interconnected in rows, in the orthogonal dimension. The simulation of such an imaging detector is presented. First, field lines in the detector are computed that show that electrons generated in γ-ray events are collected on the pixels. Charge signals, induced on the pixel and on the strip by drifting electrons, are calculated for several points of interaction inside the detector unit cell. These show that this new detector should retain the spectroscopic and detection efficiency advantages of single carrier (electrons) charge sensing devices such as pixel detectors or spectrometers with controlling electrodes. Furthermore, it retains the main advantage of conventional strip detectors, i.e. an N x N array of imaging pixels realized with only 2N electronic channels. An additional potential advantage is the measurement of the third coordinate, i.e. the depth of interaction in the detector.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Luke, P.N., IEEE Trans. Nucl. Sci., 42, p. 207, 1995.Google Scholar
2. He, Z. et al., IEEE 1996 Nuclear Science Symposium Conf. Record, p. 331.Google Scholar
3. Eskin, J.D. et al., IEEE 1995 Nuclear Science Symposium Conf. Record, p. 544.Google Scholar
4. Barber, H.B. et al., SPIE Conf. Proc. Denver CO, 2859, p. 26, 1996.Google Scholar
5. Hamel, L.A. and Paquet, S., Nucl. Instr. and Meth. A, 280, p. 238, 1996.Google Scholar
6. Ryan, J.M. et al., SPIE Conf. Proc. San Diego CA, 2518, p. 292, 1995.Google Scholar
7. Hamel, L.A. et al., IEEE Trans. Nucl. Sci., 43, p. 1422, 1996.Google Scholar
8. Macri, J.R. et al., SPIE Conf. Proc. Denver CO, 2859, p. 29, 1996.Google Scholar
9. Mayer, M. et al., IEEE Trans. Nucl. Sci., 44, p. 922, 1997.Google Scholar
10. Kurczynski, P. et al., IEEE Trans. Nucl. Sci., 44, p. 1011, 1997.Google Scholar
11. Tousignant, O. et al., “Progress in the study of CdZnTe strip detectors”, SPIE Conf. Proc. San Diego CA, 3115, 1997.Google Scholar
12. Hamel, L.A. et al., “Transport properties and performance of CdZnTe strip detectors”, IEEE Nuclear Science Symposium, Albuquerque NM, 1997.Google Scholar
13.. Jordanov, V.T. and Macri, J.R., “Biasing scheme for AC coupled strip detectors”, IEEE Nuclear Science Symposium, Albuquerque NM, 1997.Google Scholar
14.. Butler, J.F., Nucl. Instr. Meth. A, 396, p. 427, 1997.Google Scholar
15.. Heanue, J.A., Brown, J.K. and Hasegawa, B.H., IEEE Trans. Nucl. Sci., 44, p. 701, 1997.Google Scholar