Published online by Cambridge University Press: 14 March 2011
Chemical mechanical polishing (CMP) of copper using alumina-based NH4OH slurry containing benzotriazole (BTA) has been evaluated in terms of polish efficiency and viability. Dishing of damascene copper patterns can result from a combination of chemical dissolution and mechanical abrasion due to the deformed polishing pad bending into the recessed copper regions. The addition of at least 0.1 wt.% BTA to the slurry leads to the formation of a thin Cu(I)-BTA polymer on the copper surface during CMP. This polymer reduces the amount of dishing by an order of magnitude. At the same time, however, the CMP polish rate falls sharply with the addition of 0.1 - 0.25 wt.% BTA to the slurry. Above 0.25 wt.% BTA, the polish rate falls no further. Stability of alumina particles in the NH4OH slurry is found to deteriorate with the addition of BTA. Integrated copper/barrier electromigration resistance test structures with large contact areas (2×2mm) have been successfully patterned using a 2-step CMP/etching process scheme, using a BTA-containing slurry to minimise dishing.