Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:32:55.616Z Has data issue: false hasContentIssue false

An Electrochemical and XPS Investigation of Sputter Deposited Ni44 Fe32Cr11P8B5 on 304 Stainless Steel

Published online by Cambridge University Press:  26 February 2011

P. V. Nagarkar
Affiliation:
The H.H. Uhlig Corrosion Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.
R. M. Latanision
Affiliation:
The H.H. Uhlig Corrosion Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.
Get access

Abstract

An Ni44 Fe32Cr11P8B5 (at.%) alloy was sputter deposited on to water cooled 304 stainless steel substrates. Electrochemical testing was performed in 0.1N H2So4 with and without the addition of O.06N NaCI. The surface layers of specimens polarized into the active and passive regions of the anodic polarization curves were analyzed using x-ray photoelectron spectroscopy (XPS) to check for preferential dissolution and possible segregation of the constituent elements. A significant improvement in the overall corrosion behaviour of 304 stainless steel was observed due to the sputter deposited layer.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tsuru, T. and Latanision, R.M., J. Electrochem. Soc. 129 (7), 1402 (1982).Google Scholar
2. Naka, M., Hashimoto, K. and Masumoto, T., J. Japan. Inst. Met. 38, 835 (1974).Google Scholar
3. Hashimoto, K., Proceedings of Rapidly Quenched Metals (RQ5) Vol.II Steeb, S. and Warlimont, H. (eds.) Wurzburg 1984 (Elsevier Science Publishers 1985) pp. 1449.Google Scholar
4. Thorpe, S.J., Ramaswamy, B. and Aust, K.T.. J. Electrochem. Soc. (to be published).Google Scholar
5. Vasil'ev, V.Yu., Isaev, N.I., Shumilov, V.N., Revyakin, A.V., Rodin, N.N., Zudin, M.B. and Kanevski, A.G., Izv. Akad. Nauk SSSR, Metall. 2, 180 (1983).Google Scholar
6. Naka, M. and Hashimoto, K., Corrosion, 32,(4) 146 (1976).Google Scholar
7. Devine, T.M., J. Electrochem. Soc. 124, 38 (1977).Google Scholar
8. Thakoor, A.P., Khanna, S.K., Williams, R.M. and Landel, R.F., J. Vac. Sci. Tech., 1 (2) 520 (1983).Google Scholar
9. Wang, R., Merz, M.D., Corr., 40, (6) 272 (1984).Google Scholar
10. Nowak, W.B., Mat. Sci. and Eng., 23, 301 (1976).Google Scholar
11. Diegle, R.B., Merz, M.D., J. Electrochem. Soc., 127, 2030 (1980).Google Scholar
12. Anderson, R.A., Dobisz, E.A., Perepezko, J.H., Thomas, R.E. and Wiley, J.D.. Proc. of Symposium on Chemistry and Physics of Rapidly Solidified Materials. Berkowitz, B.J. and Scattergood, R.O., Editors; AIME New York N.Y.(1982) pp.111.Google Scholar
13. Wagner, C.D., Davis, L.E., Zeller, M.V., Taylor, J.A., Raymond, R.M. and Gale, L.H., Surf. Interface Anal., 3, 211 (1981).Google Scholar
14. Sorenson, N.R., Hunkeler, F.J. and Latanision, R.M., Corr., 40, (11) 619 (1984).Google Scholar
15. Baer, D.R. and Thomas, M.T., J. Vac. Sci. Tech., 18, (3) 722 (1981).Google Scholar