Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-03T23:41:59.008Z Has data issue: false hasContentIssue false

An attempt to handle the nanopatterning of materials created under ion beam mixing

Published online by Cambridge University Press:  22 March 2013

D. Simeone
Affiliation:
DEN/DANS/DMN/SRMA/LA2M/LRC-CARMEN, CEA Saclay, 91191 Gif-sur-Yvette, France
G. Baldinozzi
Affiliation:
CNRS-SPMS/UMR 8580/ LRC CARMEN Ecole Centrale Paris, 92295 Châtenay- Malabry
D. Gosset
Affiliation:
CNRS-SPMS/UMR 8580/ LRC CARMEN Ecole Centrale Paris, 92295 Châtenay- Malabry
G. Demange
Affiliation:
CNRS-SPMS/UMR 8580/ LRC CARMEN Ecole Centrale Paris, 92295 Châtenay- Malabry
Y. Zhang
Affiliation:
Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
L. Luneville
Affiliation:
DEN/DANS/DM2S/SERMA/LLPR/LRC-CARMEN, CEA Saclay, 91191 Gif-sur-Yvette, France
Get access

Abstract

In the past fifty years, experimental works based on TEM or grazing incidence X ray diffraction have clearly shown that alloys and ceramics exhibit a nano pattering under irradiation [1,2,3]. Many works were devoted to study the nano patterning induced by ion beam mixing in solids [17,18,19]. Understanding the nano patterning will provide scientific bases to tailor materials with well-defined microstructures at the nanometric scale. The slowing down of impinging particles in solids leads to a complex distribution of subcascades. Each subcascade will give rise to an athermal diffusion of atoms in the medium. In this work, we focused on this point. Based on the well-known Cahn Hilliard Cook (CHC) equation, we analytically calculate the structure factor describing the nano patterning within the mean field approximation. It has shown that this analytical structure factor mimics the structure factor extracted from direct numerical simulations of the time dependent CHC equation. It appears that this structure factor exhibits a universal feature under irradiation.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cheng, Y., Mater. Sci. Rep. 5, 45 (1990).10.1016/S0920-2307(05)80007-6CrossRefGoogle Scholar
Simeone, D., Baldinozzi, G., Gosset, D., Le Caer, S., Mazerolles, L., Phys Rev B 70, 134116 (2004).10.1103/PhysRevB.70.134116CrossRefGoogle Scholar
Benyagoub, A., Levesque, L., Couvreur, F., Mougel, C., Dufour, C., Paummier, E., Appl. Phys. Lett. 77, 3197 (1998).10.1063/1.1326483CrossRefGoogle Scholar
Baldinozzi, G., Simeone, D., Gosset, D., Monnet, I., Le caer, S., Mazerolles, L., Phys Rev B 74, 132107 (2006).10.1103/PhysRevB.74.132107CrossRefGoogle Scholar
Bernas, H., Attane, J. P., Heinig, K. H., Halley, D., Ravelosona, D., Marty, A., Auric, P., Chappert, C., and Samson, Y., Phys. Rev. Lett. 91, 077203 (2003).10.1103/PhysRevLett.91.077203CrossRefGoogle Scholar
Bolse, W., Mater. Sci. Eng. R. 12, 53 (1994).10.1016/0927-796X(94)90001-9CrossRefGoogle Scholar
for a comprehensive review of spatio-temporal pattern formation in reaction diffusion systems, seeCross, M. and Hohenberg, P., Rev Mod. Phys. 65, 851 (1993).10.1103/RevModPhys.65.851CrossRefGoogle Scholar
Simeone, D., Luneville, L., Serruys, Y., Phys. Rev. E 82, 011122 (2010).10.1103/PhysRevE.82.011122CrossRefGoogle Scholar
Martin, G., Phys. Rev. B 30, 1424 (1984).10.1103/PhysRevB.30.1424CrossRefGoogle Scholar
Martin, G., Bellon, P., Solid State Phys. 5354, 1 (1997).Google Scholar
Simeone, D., Luneville, L., Phys. Rev. E 81, 21115, (2010).10.1103/PhysRevE.81.021115CrossRefGoogle Scholar
Simeone, D., Dodane, C., Gosset, D., Daniel, P., Beauvy, M., Journal of Nucl. Mat. 300, 151, (2002).10.1016/S0022-3115(01)00749-8CrossRefGoogle Scholar
Cook, H., Brownian motion in spinodal decomposition, Acta Metal. 18, 297, (1970).10.1016/0001-6160(70)90144-6CrossRefGoogle Scholar
Fisher, D, Huse, D., Phys. Rev. B 38, 373, (1988).10.1103/PhysRevB.38.373CrossRefGoogle Scholar
Enrique, R, Nordlung, K., Averbach, R., Bellon, P., Journal of Applied physics 93(5), 2917, (2003).10.1063/1.1540743CrossRefGoogle Scholar
Glotzer, S., Stauffer, D., Jan, N, Phys. Rev. Lett. 72, 4109 (1994) .10.1103/PhysRevLett.72.4109CrossRefGoogle Scholar
Enrique, R., Bellon, P., Phys. Rev. Lett. 84(13), 2885, (2000).10.1103/PhysRevLett.84.2885CrossRefGoogle Scholar
Enrique, R., Bellon, P., Phys. Rev. B 63, 134111, (2001).10.1103/PhysRevB.63.134111CrossRefGoogle Scholar
Ye, J., Bellon, P., Phys. Rev. B 73, 224121 (2006).10.1103/PhysRevB.73.224121CrossRefGoogle Scholar
Glotzer, S., Coniglio, A., Phys. Rev. E 50(5), 4241 (1994).10.1103/PhysRevE.50.4241CrossRefGoogle Scholar
Martin, G., Phys. Rev. B 41, 2279, (1990).10.1103/PhysRevB.41.2279CrossRefGoogle Scholar
Gouyet, J.F., Phys. Rev. E, 51(3), 1695, (1995).10.1103/PhysRevE.51.1695CrossRefGoogle Scholar
Wei, L., Averback, R., J of Appl. Phys. 81, 613 (1997).10.1063/1.364202CrossRefGoogle Scholar
Rogers, T., Eldere, K., Desai, R., Phys. Rev. B 37(16), 9638 (1988).10.1103/PhysRevB.37.9638CrossRefGoogle Scholar
Zhu, J., Cheng, L., Shen, J., Tikare, V., Phys. Rev. E 60(4), 3564, (1999).10.1103/PhysRevE.60.3564CrossRefGoogle Scholar