Published online by Cambridge University Press: 28 February 2011
The paper considers the long term corrosion of carbon-steel containers for heat generating nuclear waste in a granitic repository. Under such conditions carbon steel may exhibit general, localised or passive corrosion behaviour depending on the exact composition and redox potential of the groundwater contacting the containers; localised corrosion being of most concern because it has the fastest propagation rate. It is well established, however, that such localised corrosion is only possible when the environment is sufficiently oxidising to maintain a positive potential gradient between the cathodic surface and the corrosion sites, which requires that species with oxidising potentials greater than water need to be present. This fact provides a basis for estimating the periods during which containers may be subject to localised and subsequently to general corrosion, and hence for making an overall assessment of the metal allowance required for a specified container life. A model for the diffusion transport of oxygen has been developed, and a sensitivity analysis has shown that the period of possible localised attack is strongly dependent on the passive film leakage current, the radiation dose rate and the oxygen diffusion coefficient.