Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T05:43:44.815Z Has data issue: false hasContentIssue false

An Alternative Approach for Modeling the Hot Carrier Degradation of the Si/SiO2 Interface

Published online by Cambridge University Press:  10 February 2011

Zhi Chen
Affiliation:
Department of Electrical and Computer Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801
Jinju Lee
Affiliation:
Department of Electrical and Computer Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801
Joseph W. Lyding
Affiliation:
Department of Electrical and Computer Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801
Get access

Abstract

An alternative approach for modeling the hot carrier degradation of the Si/SiO2 interface based on the dispersive characteristics of the interface trap generation has been proposed. The timedependent interface trap generation has been modeled using the stretched exponential expression. The conventional power law of degradation is just the approximation of this general form. Very good agreement has been found between the theoretical model and the experimental data. This approach gives more physical insight into the understanding of the mechanism for the interface trap generation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Takeda, E., Yang, C. Y., and Miura-Hamada, A., Hot-carrier effects in MOS devices, Academic Press, San Diego, CA, 1995.Google Scholar
2. Hu, C., Tam, S. C., Hsu, F.C., Ko, P.-K., Chan, T. Y., and Terrill, K. W., IEEE Trans. Electron. Dev. ED–32, 375 (1985).Google Scholar
3. Sun, S. W., Orlowski, M., and Fu, K.-Y., IEEE Electron. Dev. Lett. 11, 297 (1990).Google Scholar
4. Doyle, B., Bourcerie, M., Marchetaux, J.-C., and Boudou, A., IEEE Trans. Electron. Dev. 37, 268 (1990).Google Scholar
5. Heremans, P., Bellens, R., Groeseneken, G., and Maes, H. E., IEEE Trans. Electron. Dev. 35, 2194 (1988).Google Scholar
6. Doyle, B. S., Mistry, K. R., and Faricelli, J., IEEE Electron Dev. Lett. 18, 51 (1997).Google Scholar
7. Scher, H. and Montroll, E. W., Phys. Rev. B 12, 2455 (1975).Google Scholar
8. Kakalios, J., Street, R. A., and Jackson, W. B., Phys. Rev. Lett. 59, 1037 (1987).Google Scholar
9. Redfield, D. and Bube, R. H., Appl. Phys. Lett. 54, 1037 (1989).Google Scholar
10. Bube, R. H., Echeverria, L., and Redfield, D., Appl. Phys. Lett. 57, 79 (1990).Google Scholar
11. Brower, K. L., Phys. Rev. B 42, 3444 (1990).Google Scholar
12. Stathis, J. H. and Dimaria, D. J., Appl. Phys. Lett. 61, 2887 (1992).Google Scholar
13. Poindexter, E. H., Caplan, P. J., Deal, B. E., and Razouk, R. R., J. Appl. Phys. 52, 879 (1981).Google Scholar
14. Choi, J. Y., Ko, P. K., Hu, C., and Scott, W. F., J. Appl. Phys. 65, 354 (1989).Google Scholar
15. Lyding, J. W., Hess, K., and Kizilyalli, I. C., Appl. Phys. Lett. 68, 2526 (1996).Google Scholar
16. Wei, J. H., Sun, M.-S., and Lee, S.-C., Appl. Phys. Lett. 71, 1498 (1997).Google Scholar