Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:03:04.107Z Has data issue: false hasContentIssue false

Amorphous silicon Bragg reflectors fabricated by oblique angle deposition

Published online by Cambridge University Press:  25 April 2012

S. J. Jang*
Affiliation:
School of Information & Mechatronics, Gwangju Institute of Science & Technology, Gwangju, 500-712 Korea
C. I. Yeo
Affiliation:
School of Information & Mechatronics, Gwangju Institute of Science & Technology, Gwangju, 500-712 Korea
Y. T. Lee
Affiliation:
School of Information & Mechatronics, Gwangju Institute of Science & Technology, Gwangju, 500-712 Korea Graduate Program of Photonic and Applied Physics, Gwangju Institute of Science & Technology, Gwangju, 500-712 Korea Department of Nanobio Materials & Electronics, Gwangju Institute of Science & Technology, Gwangju, 500-712 Korea
Get access

Abstract

We demonstrate the highly reflective broadband a-Si distributed Bragg reflector fabricated by oblique angle deposition. By tuning the refractive index of a-Si film, the high index contrast material system was achieved. The broadband reflective characteristics of a-Si distributed Bragg reflector were investigated by calculation and fabrication. The broad stop band (Δλ/λ=33.7%, R>99%) with only a five-pair a-Si distributed Bragg reflector was achieved experimentally at center wavelength of 650, 980, and 1550 nm. The size-, feature- and substrate-independent method for highly reflective Bragg reflectors was realized by simple oblique angle evaporation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Boucart, J., Strack, C., Gaborit, F., Plais, A., Bouche, N., Derouin, E., Remy, J. C., Bonnet-Gamard, J., Goldstein, L., Fortin, C., Carpentier, D., Salet, P., Brillouet, F., and Jacquet, J., “Metamorphic DBR and tunnel-junction injection: A CW RT monolithic long-wavelength VCSEL,” IEEE J. Select. Top. Quant. Electron. 5, 520529 (1999).Google Scholar
2. Ripin, D. J., Gopinath, J. T., Shen, H. M., Erchak, A. A., Petrich, G. S., Kolodziejski, L. A., Kartner, F. X., and Ippen, E. P., “Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser,” Opt. Commun. 214, 285289 (2002).Google Scholar
3. Schubert, E. F., Hunt, N. E. J., Vredenberg, A. M., Harris, T. D., Poate, J. M., Jacobson, D. C., Wong, Y. H., and Zydzik, G. J., “Enhanced photoluminescence by resonant absorption in Er-doped SiO2/Si microcavities,” Appl. Phys. Lett. 63, 26032605 (1993).Google Scholar
4. Lin, Y. H., Wu, C. L., Pai, Y. H., and Lin, G. R., “A 533-nm self-luminescent Si-rich SiNx/SiOx distributed Bragg reflector,” Opt. Express 19, 65636570 (2011).Google Scholar
5. Jang, S. J., Song, Y. M., Choi, H. J., Yu, J. S., and Lee, Y. T., “Structural and optical properties of silicon by tilted angle evaporation,” Surf. Coat. Tech. 205, S447S450 (2010).Google Scholar
6. Schubert, M. F., Xi, J.-Q., Kim, J. K., and Schubert, E. F., “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).Google Scholar
7. Xi, J.-Q., Schubert, M. F., Kim, J. K., Schubert, E. F., Chen, M., Lin, S. Y., Liu, W., and Smart, J. A., “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176179 (2007).Google Scholar
8. Fan, J., Tang, X., Zhao, Y., “Water contact angles of vertically aligned Si nanorod arrays,” Nanotechnology 15, 501504 (2004).Google Scholar
9. Song, Y. M., Choi, H. J., Yu, J. S., and Lee, Y. T., “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18, 1306313071 (2010).Google Scholar
10. Mateus, C. F. R., Huang, M. C. Y., Chen, L., Chang-Hasnain, C. J., and Suzuki, Y., “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 16761678 (2004).Google Scholar