Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:34:24.708Z Has data issue: false hasContentIssue false

Amorphous Phase Trapping as a Result of Pulsed Laser Irradiation of Silicon

Published online by Cambridge University Press:  15 February 2011

R. F. Wood*
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
Get access

Abstract

It is concluded that large interface undercoolings of ˜ 300 deg are not likely to occur during pulsed laser annealing and that the observed liquid to amorphous phase transition is not a purely thermodynamic effect. It is then shown that the formation of the amorphous phase can be understood on the basis of a kinetic rate model which makes large undercoolings of the interface unnecessary.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research sponsored by the Division of Materials Science, U.S. Department of Energy, under contract W-7405-eng-26 with Union Carbide Corporation.

References

REFERENCES

1.Liu, P. L., Yen, R., Bloembergen, N., and Hodgson, R. T., Appl. Phys. Lett. 34, 864 (1979).Google Scholar
2.Tsu, R., Hodgson, R. T., Tan, T. Y., and Baglin, J. E., Phys. Rev. Lett. 42, 1356 (1979).Google Scholar
3.Cullis, A. G., Weber, H. C., Chew, N. G., Poate, J. M., and Baeri, P., Phys. Rev. Lett. 49, 219 (1982).Google Scholar
4.Bagley, B. G. and Chen, H. S., in Laser Solid Interactions and Laser Processing-1978, ed. by Ferris, S. D., Leamy, H. J., and Poate, J. M., AIP Conference Proceedings No. 50 (American Institute of Physics, New York, 1979), p. 97;Google Scholar
Spaepen, F. and Turnbull, D., ibid, p. 73.Google Scholar
5.Wood, R. F., Appl. Phys. Lett. 37, 302 (1980);Google Scholar
Wood, R. F., Phys. Rev. B 25, 2786 (1982).Google Scholar
6.Jackson, K. A. and Chalmers, B., Can. J. Phys. 34, 473 (1956).Google Scholar
7.Wood, R. F. and Giles, G. E., Phys. Rev. B 23, 2923 (1981).Google Scholar
8.Young, F. W. Jr., private communication.Google Scholar
9.Glasov, V. M., Chizhevskaya, S. N., and Glagoleva, N. N., Liquid Semiconductors, (Plenum Press, N.Y., 1969).Google Scholar
10.Csepregi, L., Kennedy, E. F., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 49, 3906 (1978).Google Scholar
11.Stein, H. J., Vook, F. L., Brice, D. K., Borders, J. A., and Picraux, S. T., Radiation Effects 6, 19 (1970).Google Scholar
12.Crowder, B. L., Title, R. S., Brodsky, M. H., and Petit, G. D., Appl. Phys. Lett. 16, 205 (1970).Google Scholar
13.van Vechten, J. A., Bull. Amer. Phys. Soc. 27, 365 (1982).Google Scholar
14.Kokorowski, S. A., Olsen, G. L., and Hess, L. D., J. Appl. Phsy. 53, 921 (1982).Google Scholar
15.Knapp, J. A. and Picraux, S. T., Appl. Phys. Lett. 38, 873 (1981).Google Scholar