Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:16:00.431Z Has data issue: false hasContentIssue false

Amorphous Phase Formation During Ion Mixing of Ti/Si Bilayers at Elevated Temperature

Published online by Cambridge University Press:  26 February 2011

K. Maex
Affiliation:
Interuniversity Microelectronics Center (IMEC v.z.w.) Kapeldreef 75, B-3030 Leuven, Belgium
R. F. De Keersmaecker
Affiliation:
Interuniversity Microelectronics Center (IMEC v.z.w.) Kapeldreef 75, B-3030 Leuven, Belgium
M. Van rossum
Affiliation:
Interuniversity Microelectronics Center (IMEC v.z.w.) Kapeldreef 75, B-3030 Leuven, Belgium
W. F. Van Der Weg
Affiliation:
Department of Technical Physics, State University Utrecht, PO Box 80000, 3508 TA Utrecht, The Netherlands
Get access

Abstract

The amorphous phaseformation in Ti-Si bilayers upon ion mixing at elevated temperatures and in Ti-Si multilayers upon thermal treatment was studied. In the case of ion mixing with 5×1015 cm−2 Xe atoms at temperatures around 240°C a 100nm thick amorphous Ti-Si alloy is formed with a very homogeneous Ti:Si=3 :4 composition. Thermal treatment of the Ti-Si multilayer structure at similar temperatures also yields amorphous silicide layers. The results are interpreted according to the evolution in a planar binary diffusion couple, where the Si and Ti concentrations in the reacted layer are dictated by thermodynamic and kinetic arguments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shibata, T., Hieda, K., Sato, M., Konaka, M., Dang, R.L.M. and Lizuka, H., Tech. Digest Int. Electron Devices Meeting., 1981, p. 647.Google Scholar
2. Maex, K., Van den hove, L. and De Keersmaecker, R.F., Thin Solid Films, 140 (1986) 149 CrossRefGoogle Scholar
3. Hung, L.S., Gyulai, J. and Mayer, J.W., Lau, S.S., Nicolet, M.-A., J. Appl. Phys., 54 (1983) 5076.CrossRefGoogle Scholar
4. van Houtum, H.J.W. and Raaijmakers, I.J.M.M., Mater.Res.Soc.Symp. Proc., Vol.54, 1986,p 37.CrossRefGoogle Scholar
5. Butz, R., Rubloff, G.W., Tan, T.Y. and Ho, P.S., Phys. Rev.B 30 (1984) 5421.CrossRefGoogle Scholar
6. Kohlhof, K., Mantl, S. and Stritzker, B., Mater.Res.Soc.Symp.Proc., Vol. 74.Google Scholar
7. Maex, K., De Keersmaecker, R. F., Van Rossum, M., van der Weg, W.F. and Krooshof, G., Nucl. Instr. and Meth. in Phys. Res. B19/20 (1987) 731.Google Scholar
8. Maex, K., De Keersmaecker, R.F., Van Rossum, M., van der Weg, W.F. and Krooshof, G., Le Vide, Les Couches Minces, Vol.42,No 236 (1987) 141.Google Scholar
9. Holloway, K. and Sinclair, R., J. Appl. Phys. 61 (1987) 1359.CrossRefGoogle Scholar
10. Tsaur, B.T., in Baglin, J.E. and Poate, J. (eds.), Thin Film Interfaces and Interactions, Electrochem. Soc., Princeton, NJ, 1980, 205.Google Scholar
11. Schwarz, R.B. and Johnson, W.L., Phys. Rev. Lett. 51 (1983) 415.Google Scholar
12. Miedema, A.R., Philips Techn.Rev. 36 (1976) 217.Google Scholar
13. Tao, K., Hewett, C.A., Lau, S.S., Buchal, Ch. and Poker, D.B., Nucl. Instr.and Meth. in Phys. Res. B19/20 (1987) 753.Google Scholar
14. Gosele, U. and Tu, K.N., J. Appl. Phys., 53 (1982) 3252.CrossRefGoogle Scholar
15. Kaufman, L., CALPHAD 3 (1979) 45.Google Scholar
16. Maex, K., Ph. D. Thesis, Katholieke Universiteit Leuven, Sept. 1987.Google Scholar