Article contents
Amorphous and Nanocrystalline Oxide Electrodes for Rechargeable Lithium Batteries
Published online by Cambridge University Press: 10 February 2011
Abstract
Oxo ions (MO4)n- (M = V, Cr, Mn and Mo) have been reduced in aqueous solutions with potassium borohydride to obtain the binary oxides MO2+δ. While the vanadium and manganese oxides are nanocrystalline, the chromium and molybdenum oxides are amorphous. The nanocrystalline VO2 having a metastable structure and the amorphous CrO2 and MoO2.3 transform to the thermodynamically more stable phases upon heating above 300–400 °C. These metastable oxides after heating in vacuum at 200–300 °C to remove water show good electrode performance in lithium cells. VO2, CrO2 and MoO2.3 show a reversible capacity of, respectively, 290 mAh/g in the range 4–1.5 V, 180 mAh/g in the range 3.3–2.3 V, and 220 mAh/g in the range 3–1 V. MnO2 obtained by this process does not show good electrode properties.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1998
References
REFERENCES
- 1
- Cited by