Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T07:39:20.850Z Has data issue: false hasContentIssue false

Amorphous and Crystalline TiO2 Nanotube Arrays for Enhanced Li-ion Intercalation Properties

Published online by Cambridge University Press:  01 February 2011

Dongsheng Guan
Affiliation:
[email protected], Louisiana State University, Baton Rouge, United States
Chuan Cai
Affiliation:
[email protected], Louisiana State University, Baton Rouge, United States
Ying Wang
Affiliation:
[email protected], louisiana State University, Baton Rouge, United States
Get access

Abstract

We have employed anodic oxidation of Ti foils to prepare self-organized TiO2 nanotube arrays which show enhanced electrochemical properties for applications as Li-ion battery electrode materials. The lengths and pore diameters of TiO2 nanotubes can be finely tuned by varying voltage, electrolyte composition, or anodization time. The as-prepared nanotubes are amorphous and can be converted into anatase nanotubes with heat treatment at 480oC and nanotubes of mixed anatase/rutile phases by heating at 580oC. The morphological features of nanotubes remain unchanged after annealing. Amorphous nanotubes with a length of 3.0 μm and an outer diameter of 125 nm delivers a capacity of 91.2 μA h cm-2 at a current density of 400 μA cm-2, while those with a length of 25 μm and an outer diameter of 158 nm display a capacity of 533 μA h cm-2. The 3-μm long anatase nanotubes and nanotubes of mixed phases show lower capacities of 53.8 μA h cm-2 and 63.1 μA h cm-2, respectively at the same current density. The amorphous TiO2 nanotubes with a length of 1.9 μm exhibit a capacity five times higher than that of TiO2 compact layer even when the nanotube array is cycled at a current density 80 times higher than that for the compact layer. The amorphous nanotubes show excellent capacity retention ability over 50 cycles. Cycled nanotubes show little change in morphology compared to the nanotubes before cycling, indicating the high structural stability of TiO2 nanotubes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tarascon, J. M., Armand, M., Nature 444, 359367 (2001).Google Scholar
[2] Armstrong, A. R., Armstrong, G., Canales, J., Bruce, P. G., J. Power Sources 146, 501 (2005).Google Scholar
[3] Winter, M., Besenhard, J. O., Spahr, M. E., Novak, P., Adv. Mater. 10, 725763 (1998).Google Scholar
[4] Rom, I., Wachtler, M., Papst, I., Schmied, M., Besenhard, J. O., Hofer, F., Winter, M., Solid State Ionics 143 (3–4), 329336 (1999).Google Scholar
[5] Du, N., Zhang, H., Chen, B. D., Wu, J. B., Ma, X. Y., Liu, Z. H., Zhang, Y. Q., Yang, D. R., Huang, X. H., Tu, J. P., Adv. Mater. 19 (24), 45054509 (2007).Google Scholar
[6] Idota, Y., Mishima, M., Miyaki, M., Kubota, T., Miyasaka, T., Eur. Pat. Appl. 65140 A1 94116643.1 (1994).Google Scholar
[7] Ortiz, G. F., Hanzu, I., Djenizian, T., Lavela, P., Tirado, J. L., Chem. Mater. 21, 6367 (2009).Google Scholar
[8] Reddy, M. A., Pralong, V., Varadaraju, U. V., Raveau, B., Electrochem. Solid-State Lett. 11 (8), A132–A134 (2008).Google Scholar
[9] Noailles, L. D., Johnson, C. S., Vaughey, J. T., Thackeray, M. M., J. Power Sources 81–82, 259263 (1999).Google Scholar
[10] Wilkening, M., Heine, J., Phys. Rev. B 80, 064302 (2009).Google Scholar
[11] Wua, M. S., Wang, M. J., Jow, J. J., Yang, W. D., Hsieh, C. Y., Tsai, H. M., J. Power Sources 185, 14201424 (2008).Google Scholar
[12] Kubiaka, P., Pfanzelta, M., Geserick, J., Hörmann, U., Hüsing, N., Kaiser, U., Mehrensa, M. W., J. Power Sources 194, 10991104 (2009).Google Scholar
[13] Fang, H. T., Liu, M., Wang, D. W., Sun, T., Guan, D. S., F. Li, Zhou, J. G., Sham, T. K., Cheng, H. M., Nanotechnology 20, 225701 (2009).Google Scholar
[14] Gong, D., Grimes, C. A., Varghese, O. K., J. Mater. Res. 16 (12), 33313334 (2001).Google Scholar
[15] Guan, D. S., Fang, H. T., Lu, H. F., Sun, T., Li, F., Liu, M., Progress in Chemistry 20 (12), 18681879 (2008).Google Scholar
[16] Kerisit, S., Rosso, K. M., Yang, Z. G., Liu, J., J. Phys. Chem. C 113, 2099821007 (2009).Google Scholar