Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T23:09:17.475Z Has data issue: false hasContentIssue false

Amorphization and Recrystallization in MeV Ion Implanted InP Crystals

Published online by Cambridge University Press:  26 February 2011

Fulin Xiong
Affiliation:
Materials Research Group, California Institute of Technology, Pasadena, California 91125
C. W. Nieh
Affiliation:
Materials Research Group, California Institute of Technology, Pasadena, California 91125
D. N. Jamieson
Affiliation:
Materials Research Group, California Institute of Technology, Pasadena, California 91125
T. Vreeland Jr.
Affiliation:
Materials Research Group, California Institute of Technology, Pasadena, California 91125
T. A. Tombrello
Affiliation:
Materials Research Group, California Institute of Technology, Pasadena, California 91125
Get access

Abstract

A comprehensive study of MeV-15N-ion-implanted InP by a variety of analytical techniques has revealed the physical processes involved in MeV ion implantation into III-V compound semiconductors as well as the influence of post-implantation annealing. It provides a coherent picture of implant distribution, structural transition, crystalline damage, and lattice strain in InP crystals induced by ion implantation and thermal annealing. The experimental results from the different measurements are summarized in this report. Mechanisms of amorphization by implantation and recrystallization through annealing in MeV-ion-implanted InP are proposed and discussed in light of the results obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supported in part by National Science Foundation [DMR-21119].

References

REFERENCES

1. Sadana, D. K., Sands, T., and Washburn, J., Appl. Phys. Lett. 44(6) (1984) 623.Google Scholar
2. Wie, C. R., Vreeland, T. Jr. and Tombrello, T. A., Nucl. Inst. and Meth. B16 (1986) 44; Phys. Rev. B33 (1986) 4083; J. Appl. Phys. 59 (1986) 3743.Google Scholar
3. Bardin, T. T., Pronko, J. G., Junga, F. A., Opyd, W. A., Mardinly, A. J., Xiong, F. and Tombrello, T. A., Nucl. Instr. and Meth. B24/25 (1987) 548.Google Scholar
4. Slater, M., Kostic, S., Nobes, M. J. and Carter, G., Nucl. Instr. and Meth., B7/8 (1985) 429.Google Scholar
5. Sadana, D. K., Nucl. Instr. and Meth., B7/8 (1985) 375, and references therein.Google Scholar
6. Wie, C. R., Jones, T., Tombrello, T. A., Vreeland, T., Xiong, F., Zhou, Z., Burns, G. and Dacol, F. H., Mat. Res. Soc. Symp. Proc., Vol.74 (1987) 517.Google Scholar
7. Xiong, Fulin, Nieh, C. W, Tombrello, T. A., Jemieson, D. N., and Vreeland, T. Jr., Proceeding of the International Symposium on Applications of Ion Beam Produced by Small Accelerators, Oct. 1987, Jinan, China.Google Scholar
8. Seitz, F., Physics Today, 5(6) (1952) 6.Google Scholar
9. Gonser, U. and Okkerse, B., Phys. Rev. 109(3) (1958) 663.Google Scholar
10. Xiong, F., Tandem Lab Report, FX-01(1987), Caltech, unpublished.Google Scholar
11. Xiong, F., Wang, H., Chen, T. R., and Tombrello, T. A., to be published.Google Scholar