Published online by Cambridge University Press: 31 January 2011
A chemical modification process was developed to functionalize graphene with specific groups. Graphene oxide (GO) was successfully functionalized with thionyl bromide which can be used as precursors for further functionalization. Amino terminated-polyethylene glycol (PEG-NH2) molecules were linked to single-layer graphene sheets through covalent bond. FT-IR, SEM and UV-vis spectroscopy techniques were used to characterize PEG modified graphene oxide and PEG modified reduced graphene oxide (PEG-RG). PEG-RG could disperse in water, tetrahydrofuran and ethylene glycol, with individual, single-layer graphene sheets spontaneously. The dispersion behavior of PEG-RG in an aqueous solvent has been investigated. A series of solutions of PEG-RG with concentrations of 0.001% to 1.5% were prepared and the PEG-RG dispersions exhibited long-term stability. In addition, a PEG-RG film with layered structure and high conductivity has been successfully prepared by filtration.