Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:11:02.689Z Has data issue: false hasContentIssue false

Am Doping in Copper-Oxide Superconducting Systems

Published online by Cambridge University Press:  01 February 2011

S. Skanthakumar
Affiliation:
Chemistry Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

The effect of Am doping on the physical properties of three superconducting systems (RBa2Cu3O7, Pb2Sr2R1−xCaxCu3O8 and R2−xMxCuO4) have been studied using x-ray diffraction, x-ray absorption spectroscopy (XAS) and magnetic susceptibility experiments. Am is incorporated into all three systems as the tetravalent ion and superconductivity is not observed in any of the resultant compounds. The absence of superconductivity in Pb2Sr2Am0.5Ca0.5Cu3O8 is attributed to the transfer of charge from Am to the Cu-O planes. Systems that cannot incorporate a tetravalent ion, notably AmBa2Cu3O7 and Am2CuO4, do not form. Although Pr1.85Am0.15CuO4 forms with similar structure to Pr1.85Ce0.15CuO4, and Am like Ce is tetravalent, it is not superconducting. We argue that the absence of superconductivity in the Am doped Pr compound it is due to the hybridization of radially-extended f orbitals on the magnetic Am4+ ion with the Cu-O band states.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Staub, U. and Soderholm, L., in Handbook on the Physics and Chemistry of Rare Earths, edited by Gschneidner, J. K. A., Eyring, L., and Maple, M. B. (Elsevier Science, New York, 2000), Vol. 30, p. 491.Google Scholar
[2] Staub, U., Soderholm, L., Skanthakumar, S., Osborn, R., and Fauth, F., Europhys. Lett. 39, 663 (1997).Google Scholar
[3] Soderholm, L., Goodman, G. L., Welp, U., Williams, C. W., and Bolender, J., Physica C 161, 252 (1989).Google Scholar
[4] Soderholm, L., Skanthakumar, S., and Williams, C. W., Phys. Rev. B 60, 4302 (1999).Google Scholar
[5] Soderholm, L., Williams, C. W., and Welp, U., Physica C 179, 440 (1991).Google Scholar
[6] Skanthakumar, S., Williams, C. W., and Soderholm, L., Phys. Rev. B 64, 144521 (2001).Google Scholar
[7] Bard, A. J., Parsons, R., and Jordan, J., Standard potentials in aqueous solution (Dekker, New York, 1985).Google Scholar
[8] Soderholm, L., Williams, C., Skanthakumar, S., Antonio, M. R., and Conradson, S., Z. Phys. B 101, 539 (1996).Google Scholar
[9] Skanthakumar, S. and Soderholm, L., Phys. Rev. B 53, 920 (1996).Google Scholar
[10] Blackstead, H. A. and Dow, J., Phys. Rev. B 59, 14593 (1999).Google Scholar
[11] Larson, A. C. and Dreele, R. B. V., (Los Alamos National Laboratory, Los Alamos, NM 87545, 1990).Google Scholar
[12] Skanthakumar, S., Soderholm, L., and Williams, C. W., Phys. Rev. B 68, 64510 (2003).Google Scholar
[13] Conradson, S. D., Mahamid, I. A., Clark, D. L., Hess, N. J., Hudson, E. A., Neu, M. P., Palmer, P. D., Runde, W. H., and Tait, C. D., Polyhedron 19, 599 (1998).Google Scholar
[14] Bertram, S., Kaindl, G., Jove, J., Pages, M., and Gal, J., Phys. Rev. Lett. 63, 2680 (1989).Google Scholar
[15] Soderholm, L., Antonio, M. R., Williams, C. W., and Wasserman, S. R., Anal. Chem 71, 4622 (1999).Google Scholar
[16] Maple, M. B., MRS Bull. 15, 60 (1990).Google Scholar
[17] Takagi, H., Uchida, S., and Tokura, Y., Phys. Rev. Lett. 62, 1197 (1989).Google Scholar
[18] Tolura, Y., Takagi, H., and Uchida, S., Nature 337, 345 (1989).Google Scholar