Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:33:32.670Z Has data issue: false hasContentIssue false

Alternative Sintering Approaches for Fast Sintering of Inkjet Printed Nanoparticles for R2R Applications

Published online by Cambridge University Press:  16 January 2012

Jolke Perelaer*
Affiliation:
Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Jena, Germany.
Ulrich S. Schubert*
Affiliation:
Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Jena, Germany.
Get access

Abstract

Within the last decades, inkjet printing technology has developed from only a text and graphic industry to a major topic of scientific research and R&D. Inkjet printing can be used as a highly reproducible non-contact patterning technique to print at high speeds either small or large areas with high quality features; it requires only small amounts of functional materials, which immediately favors production costs. Furthermore, inkjet printing reduces the amount of processing steps due to its additive technique of materials deposition, which further decreases productions costs as well as time.

This contribution provides a number of alternative approaches to sinter inkjet printed metal precursor materials at temperatures that are compatible with cost-effective polymer foils. The prepared features can serve as interconnects and contacts for microelectronic applications, such as OLED and OPV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Perelaer, J., Smith, P. J., Mager, D., Soltman, D., Volkman, S. K., Subramanian, V., Korvink, J. G. and Schubert, U. S., J. Mater. Chem. 20, 8446 (2010).Google Scholar
2. Perelaer, J., de Laat, A. W. M., Hendriks, C. E. and Schubert, U. S., J. Mater. Chem. 18, 3209 (2008).Google Scholar
3. Smith, P. J., Shin, D.-Y., Stringer, J. E., Reis, N. and Derby, B., J. Mater. Sci. 41, 4153 (2006).Google Scholar
4. Ostwald, W., Lehrbuch der Allgemeinen Chemie, Vol. 2, Part 1, Leipzig, Germany (1896).Google Scholar
5. Kang, S.-J. L., Sintering: Densification, Grain Growth, and Microstructure, Elsevier Butterworth-Heinemann, Burlington, pp. 37-77 (2005).Google Scholar
6. Huang, D., Liao, F., Molesa, S., Redinger, D. and Subramanian, V., J. Electrochem. Soc. 150, 412 (2003).Google Scholar
7. Lu, C.-A., Lin, P., Lin, H.-C. and Wang, S.-F., Jpn. J. Appl. Phys. 46, 251 (2007).Google Scholar
8. Szczech, J. B., Megaridis, C. M., Gamota, D. R. and Zhang, J., IEEE T. Electron. Pack. 25, 26 (2002).Google Scholar
9. Subramanian, V., Fréchet, J. M. J., Chang, P. C., Huang, D., Lee, J. B., Molesa, S. E., Murphy, A. R., Redinger, D. R., and Volkman, S. K., Proc. IEEE 93, 1330 (2005).Google Scholar
10. Gamerith, S., Klug, A., Schreiber, H., Scherf, U., Moderegger, E. and List, E. J. W., Adv. Funct. Mater. 17, 3111 (2007).Google Scholar
11. Argun, A. A., Aubert, P.-H., Thompson, B. C., Schwendeman, I., Gaupp, C. L., Hwang, J., Pinto, N. J., Tanner, D. B., MacDiarmid, A. G. and Reynolds, J. R., Chem. Mater. 16, 4401 (2004).Google Scholar
12. Menard, E., Meit, M. A., Sun, Y., Park, J.-U., Jay-Lee Shir, D., Nam, Y.-S., Jeon, S. and Rogers, J. A., Chem. Rev. 107, 1117 (2007).Google Scholar
13. Tekin, E., Smith, P. J. and Schubert, U. S., Soft Matter 4, 703 (2008).Google Scholar
14. van Osch, T. H. J., Perelaer, J., de Laat, A. W. M. and Schubert, U. S., Adv. Mater. 20, 343 (2008).Google Scholar
15. Lee, H.-H., Chou, K.-S. and Huang, K.-C., Nanotechnology 16, 2436 (2005).Google Scholar
16. Ko, S. H., Pan, H., Grigoropoulos, C. P., Luscombe, C. K., Fréchet, J. M. J. and Poulikakos, D., Nanotechnology 18, 345202 (2007).Google Scholar
17. Chung, J., Ko, S., Bieri, N. R., Grigoropoulos, C. P. and Poulikakos, D., Appl. Phys. Lett. 84, 801 (2004).Google Scholar
18. Reinhold, I., Hendriks, C. E., Eckardt, R., Kranenburg, J. M., Perelaer, J., Baumann, R. R. and Schubert, U. S., J. Mater. Chem. 19, 3384 (2009).Google Scholar
19. Allen, M. L., Aronniemi, M., Mattila, T., Alastalo, A., Ojanperä, K., Suhonen, M. and Seppä, H., Nanotechnology 19, 175201 (2008).Google Scholar
20. Perelaer, J., de Gans, B.-J. and Schubert, U. S., Adv. Mater. 18, 2101 (2006).Google Scholar
21. Agrawal, D., Trans. Ind. Ceram. Soc. 65, 129 (2006).Google Scholar
22. Perelaer, J., Klokkenburg, M., Hendriks, C. E. and Schubert, U. S., Adv. Mater. 21, 4830 (2009).Google Scholar
23. Farnsworth, S., Rawson, I., Martin, K., Schroder, K. A. and Pope, D., Proc. 42nd Int. Symp. Microelectr., San José, CA, USA, 1012 (2009).Google Scholar
24. Perelaer, J. and Schubert, U. S., Proceedings of the Large-area, Organic & Printed Electronics Convention (Frankfurt, Germany), 143 (2011), ISBN: 978-3-86135-623-3.Google Scholar