Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:30:56.254Z Has data issue: false hasContentIssue false

Alternative Length Scales for Polycrystalline Materials

Published online by Cambridge University Press:  26 February 2011

C.S. Nichols
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY
R.F. Cook
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY
D.R. Clarke
Affiliation:
Materials Department, University of California-Santa Barbara, CA
D.A. Smith
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY
Get access

Abstract

It is well established from studies of bicrystals that the properties of a grain boundary depend on the atomic structure of the boundary. However, constitutive relations for the properties of polycrystalline materials do not currently take into account this boundary-toboundary variability. Instead, such relations depend on a single length scale, typically the average grain diameter. We extend the traditional viewpoint by proposing that boundaries may be divided into two distinct categories, depending on their misorientation angle. The relevant length scale in constitutive relations for polycrystals is then the average cluster size, where clusters consist of grains connected by boundaries in the same misorientation category. A brief discussion of this additional length scale and how it may be reflected in various constitutive relations for physical and mechanical properties of polycrystals is given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Randle, V. and Ralph, B., Revue Phys. Appl. 23, 501 (1988).Google Scholar
2. Russell, J.D. and Winter, A.T., Scripta Met. 19, 575 (1985).Google Scholar
3. Frize, J.D., Carry, C., and Mocellin, A., in Advances in Ceramics, Vol. 10, Structure and Properties of MgO and A12O3 Ceramics, ed. Kingery, W.D. (American Ceramics Society, Cleveland, 1984), p. 720.Google Scholar
4. Shvindlerman, L.A. and Straumal, B.B., Acta metall. 33, 1735 (1985).Google Scholar
5. Lartigue, S. and Priester, L., J. Am. Ceram. Soc. 71, 430 (1988).Google Scholar
6. Nakamichi, I., J. Sci. Hiroshima Univ., Ser. A 54, 491 (1990).Google Scholar
7. Sutton, A.P. and Balluffi, R.W., Acta metall. 35, 2177 (1985).Google Scholar
8. Livingston, J.D., in Grain Boundaries in Engineering Materials, eds. Walter, J.L., Westbrook, J.H., and Woodford, D.A. (Claitor's Publishing Division, Baton Rouge), p. 165.Google Scholar
9. Chadwick, G.A. and Smith, D.A. (editors), Grain Boundary Structure and Properties (Academic Press, New York, 1976).Google Scholar
10. Hagege, S., Nouet, G., Sainfort, G., and Sass, S.L. (editors), J. Physique 43, coll. C-6 (1982).Google Scholar
11. Balluffi, R.W., Grain Boundary Structure and Kinetics, (Am. Soc. Metals, Metals Park, Ohio, 1980).Google Scholar
12. Rüihle, M., Balluffi, R.W., Fischmeister, H., and Sass, S.L., (editors), J. Physique 46, coll. C-4 (1985).Google Scholar
13. Japan Inst. Metals. Trans. Japan Inst. Metals 27, suppl., (1986).Google Scholar
14. Watanabe, T., Materials Forum 11, 284 (1988).Google Scholar
15. Kung, H., Rasmussen, D.R., and Sass, S.L., submitted to Acta metall.Google Scholar
16. Watanabe, T., Res. Mechanica 11, 47 (1984).Google Scholar
17. Watanabe, T., Trans. Japan Inst. Metals 27, suppl., 73 (1986).Google Scholar
18. Watanabe, T., Proc. Lake Placid Intl. Conf. on Interface Eng. (1986).Google Scholar
19. Nichols, C.S., Cook, R.F., Clarke, D.R., and Smith, D.A., submitted to Acta metall.Google Scholar
20. Nichols, C.S., Cook, R.F., Clarke, D.R., and Smith, D.A., submitted to Acta metall.Google Scholar
21. Smith, C.S., in Metal Interfaces (ASM, Cleveland, 1952), p. 65.Google Scholar
22. Wigner, E.P., Group Theory (Academic Press, New York, 1959).Google Scholar
23. Zallen, R., The Physics of Amorphous Solids (John Wiley & Sons, New York, 1983), pp. 135204.Google Scholar
24. Nichols, C.S. and Clarke, D.R., Acta metall., in press.Google Scholar
25. Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B 41, 4038 (1990).Google Scholar
26. Deutscher, G. and Rappaport, M.L., Jul. de Physique Lettres, 40, 219 (1979).Google Scholar
27. Chauvineau, J.P., Croce, P., Devant, G., and Verhaeghe, M.F., J. Vac. Sci. Tech. 6, 776 (1969).Google Scholar
28. Schwarz, H. and Lüick, R., Mater. Sci. Eng. 2, 149 (1970).Google Scholar
29. Michon, P., Thin Solid Films 16, 335 (1973).CrossRefGoogle Scholar
30. van der Voort, E. and Guyot, P., Phys. Stat. Sol. (b) 47, 465 (1971).Google Scholar
31. Rice, R.W., Proc. Br. Ceram. Soc. 20, 205 (1972).Google Scholar
32. Chantikul, P., Bennison, S.J., and Lawn, B.R., J. Amer. Ceram. Soc., to be published.Google Scholar
33. Davidge, R., Mechanical Behaviour of Ceramics, (Cambridge University Press, Cambridge, 1979).Google Scholar
34. Bennison, S.J. and Lawn, B.R., Acta metall. 37, 2659 (1989).Google Scholar
35. Cook, R.F., Acta metall, mater. 38, 1083 (1990).Google Scholar
36. Cook, R.F., Mat. Res. Soc. Symp. Proc. 78, 199 (1987).Google Scholar