Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T08:03:35.129Z Has data issue: false hasContentIssue false

Alloy Phase Formation in Isolated Nanometer-sized Particles in the Au-Sn and Sn-Bi Systems

Published online by Cambridge University Press:  11 February 2011

Jung-Goo Lee
Affiliation:
Research Center for Ultra-high Voltage Electron Microscopy, Osaka University, 2–1Yamadaoka, Suita, Osaka 565–0871, Japan
Hirotaro Mori
Affiliation:
Research Center for Ultra-high Voltage Electron Microscopy, Osaka University, 2–1Yamadaoka, Suita, Osaka 565–0871, Japan
Hidehiro Yasuda
Affiliation:
Department of Mechanical Engineering, Kobe University, Rokkodai, Nada, Kobe 657–8501, Japan
Get access

Abstract

Alloy formation in nanometer-sized particles has been studied as a function of the particle size by in-situ transmission electron microscopy using particles in the Au-Sn and Sn-Bi systems. When the size of particles is larger than a critical value, essentially similar phase equilibrium was observed in nanometer-sized particles and bulk materials in the both systems. But a solid amorphous phase was formed over a compositional range near the eutectic composition when the size of particles was smaller than about 7 nm in diameter in the former system, whereas a fluid amorphous phase was formed when the size of particles is smaller than about 10 nm in diameter in the latter system. These amorphous phases directly changed into liquid phases upon heating and solidified into amorphous phases upon subsequent cooling. The formation of these thermodynamically stable amorphous phases can be attributed to the the suppression of the eutectic temperature (Teu) associated with size reduction being so large that Teu is below the glass transition temperature (Tg).

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Klement, W., Willens, R. H. and Duwez, P., Nature 187, 869 (1960).Google Scholar
2. Duwez, P., Willens, R. H. and Klement, W., J. Appl. Phys. 31, 1136 (1960).Google Scholar
3. Gutzow, I. and Avramov, I., J. Non-Cryst. Solids 16, 128 (1974).Google Scholar
4. Koch, C. C., Cavin, O. B., McKamey, C. G. and Scarbrough, J. O., Appl. Phys. Lett. 43, 1017 (1983).Google Scholar
5. Schwarz, R. B., Mater. Sci. Eng. 97, 71 (1988).Google Scholar
6. Fukunaga, T., Nakamura, K., Suzuki, K. and Mizutani, U., J. Non-Cryst. Solids 117–118, 700 (1990).Google Scholar
7. Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).Google Scholar
8. Johnson, W. L., Progress Mater. Sci. 30, 81 (1986).Google Scholar
9. Yeh, X. L., Samwer, K. and Johnson, W. L., Appl. Phys. Lett. 42, 242 (1983).Google Scholar
10. Aoki, K. and Masumoto, T., J. Alloys Compounds 231, 20 (1995).Google Scholar
11. Ermakov, A. E., Yurchikov, E. E. and Barnicov, V. A., Fiz. Met. Met-alloved. 52, 1184 (1981).Google Scholar
12. Schwarz, R. B., Petrich, R. P. and Saw, C. K., J. Non-Cryst. Solids 76, 281 (1985).Google Scholar
13. Thomas, G., Mori, H., Fujita, H. and Sinclair, R., Scripta Metall. 16, 489 (1982).Google Scholar
14. Mori, H., Fujita, H. and Fujita, M., Jpn. J. Appl. Phys. 22, L94 (1983).Google Scholar
15. Luzzi, D. E., Mori, H., Fujita, H. and Meshii, M., Acta. Metall. 34, 629 (1986).Google Scholar
16. Mori, H., Komatsu, M., Takeda, T. and Fujita, H., Phil. Mag. Lett. 63, 173 (1991).Google Scholar
17. Yasuda, H., Mori, H., Muraki, T. and Sakata, T., Z. Phys. D 31, 209 (1994).Google Scholar
18. Mori, H., Yasuda, H. and Fujii, K., Surf. Rev. Lett. 3, 1177 (1996).Google Scholar
19. Yasuda, H. and Mori, H., Z. Phys. D 37, 181 (1996).Google Scholar
20. Yasuda, H. and Mori, H., Intermetallics 4, S225 (1996).Google Scholar
21. Lee, J. G., Mori, H. and Yasuda, H., Phys. Rev. B 65, 132106 (2003).Google Scholar
22. Binary Alloy Phase Diagrams, edited by Massalski, T. B. et al. (American Society for Metals, Metals Park, OH, 1986).Google Scholar
23. Kamino, T. and Saka, H., Microsc. Microanal. Microstruct. 4, 127 (1993).Google Scholar
24. Lee, J. G. and Mori, H., J. Vac. Sci. Tec. A 21(1), 32 (2003).Google Scholar
25. Lee, J-G. and Mori, H., in preparation.Google Scholar