Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:53:06.571Z Has data issue: false hasContentIssue false

All-dielectric metamaterials: simulation of nanorod and arrays

Published online by Cambridge University Press:  15 March 2011

Elena Poklonskaya
Affiliation:
TU Dresden, Solid State Electronics Lab, 01062 Dresden, Germany
Yuriy Poplavko
Affiliation:
National Technical University of Ukraine - KPI, Microelectronics Department, 03056 Kiev, Ukraine
Gunnar Suchaneck
Affiliation:
TU Dresden, Solid State Electronics Lab, 01062 Dresden, Germany
Gerald Gerlach
Affiliation:
TU Dresden, Solid State Electronics Lab, 01062 Dresden, Germany
Get access

Abstract

In this work, scattered electric and magnetic fields of all-dielectric metamaterials were derived using a commercial RF finite-element partial differential equations solver. We present the implementation of rod-type composites consisting of a mixture of two components: the first one, which is called guest, is made of Ba1-xSrxTiO3 (0 ≤ x ≤ 1) and the second one, the host, made of SiO2. Analysis includes both the scattering effect, well described by the MIE theory, and dielectric inhomogeneous structure properties, determined using the MAXWELL-GARNETT approximation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Browning, V. and St. Wolf, Defense Advanced Research Projects Agency (DARPA) Metamaterials Program, 2001.Google Scholar
2. Kock, W. E., Proc. IRE 34, 828 (1946).Google Scholar
3. Kock, W. E., Bell System Technical J. 27, 58 (1948).Google Scholar
4. Mossotti, P.F., Bibl. Univ. Modena 6, 193 (1847).Google Scholar
5. Corkum, R.W., Proc. Inst. Radio. Engrs. 40, 574 (1952).Google Scholar
6. Rayleigh, Lord, Nature 25, 52 (1881).Google Scholar
7. Schuster, A., An Introduction to the Theory of Optics (Edward Arnold, London, 1904), pp. 317318.Google Scholar
8. Rayleigh, Lord, Phil. Mag. 45, 125 (1897).Google Scholar
9. Schlicke, H.M., J. Appl. Phys. 24, 187 (1953).Google Scholar
10. Yee, H.Y., IEEE Trans Microwave Theory Tech. 13, 256 (1965).Google Scholar
11. Lewin, L., Proc. Inst. Electr. Eng. 94, 65 (1947).Google Scholar
12. Khizniak, N.A., Zh. Tekh. Fiz. 27, 2027 (1957).Google Scholar
13. Khizniak, N.A., Zh. Tekh. Fiz. 29, 604 (1959).Google Scholar
14. Galstyan, E.A. and Ravaev, A.A., Izv. Vuz. Radiofiz. 30, 1243 (1987)Google Scholar
15. Jylhä, L., Kolmakov, I., Maslovski, S. and Treyakov, S., J. Appl. Phys. 99, 043102 (2006).Google Scholar
16. O'Brien, S. and Pendry, J.B., J. Phys. Condens. Matter 14, 4035 (2002).Google Scholar
17. Teranishi, T., Hoshina, T. and Tsurumi, T., Mat. Sci Eng. B 161, 55 (2009).Google Scholar
18. Holloway, C.L., Kuester, E.F., J. Baker-Jarvis and Kabos, P., IEEE Trans. Antennas Propag. 51, 2596 (2003).Google Scholar
19. Ghadarghadr, S. and Mosallaei, H., IEEE Trans. Antennas Propag. 57, 149 (2009).Google Scholar
20. Ahmadi, A. and Mosallaei, H., Phys. Rev. B 77, 045104 (2008).Google Scholar
21. Vendik, O.G. and Gashinova, M.S., in Proc. Eur. Microw. Conf. (2004), pp. 12091212.Google Scholar
22. Vendik, I.B., Vendik, O.G. and Gashinova, M.S., Pisma Zh. Tech. Fiz. 32, 30 (2006).Google Scholar
23. Vendik, I., Vendik, O., Kolmakov, I. and Odit, M., Opto-Electron. Rev. 14, 179 (2006).Google Scholar
24. Lepetit, T., Akmasoy, É. and Ganne, J.-P., Appl. Phys. Lett. 95, 121101 (2009).Google Scholar
25. Kim, J. and Gopinath, A., Phys. Rev. B 76, 115126 (2007).Google Scholar
26. Semouchkina, E.A., Semouchkin, G.B., Lanagan, M. and Randall, C.A., IEEE Trans. Microwave Theory Tech. 53, 1477 (2005).Google Scholar
27. Peng, L., Ran, L., Chen, H., Zhang, H., Kong, J.A. and Grzegorczyk, T.M., Phys. Rev. Lett. 98, 157403 (2007).Google Scholar
28. Schuller, J.A., Zia, R., Taubner, T. and Brongersma, M.L., Phys. Rev. Lett. 99, 107401 (2007).Google Scholar
29.Comsol Multiphysics Reference Manual, Comsol AB, Stockholm, Sweden, 2003. URL: www.comsol.com.Google Scholar
30. Oliveri, G. and Raffetto, M., Int. J. Comput. Math. Electr. Electron. Eng. 27, 1260 (2008).Google Scholar
31. Kužel, P., Kadlec, F., Němec, H., Ott, R., Hollman, E. and Klein, N., Appl. Phys Lett. 88, 102901 (2006).Google Scholar
32. Sihvola, Ari, Classical mixing approach (IEE, London, 1999), p.41 Google Scholar
33. Tsang, L., Kong, J.A., Ding, K.H. Scattering of Electromagnetic Waves (Wiley, New York, 2000), vol. 1, p.41 Google Scholar
34. Landau, L.D. and Lifshitz, E.M. Electrodynamics of Continuous Media (Pergamon, Oxford, 1975).Google Scholar