Article contents
The All Boron Carbide Diode Neutron Detector: Experiment and Modeling Approach
Published online by Cambridge University Press: 26 February 2011
Abstract
Boron carbide diode detectors, fabricated from two different polytypes of semiconducting boron carbide, will detect neutrons in reasonable agreement with theoretical expectations. The performance of the all boron carbide neutron detector differs, as expected, from devices where a boron rich neutron capture layer is distinct from the diode charge collection region (i.e. a conversion layer solid state detector).
Diodes were fabricated from natural abundance boron (20% 10B and 80% 11B.) directly on the metal substrates and metal contacts applied to the films as grown. The total boron depth was on the order of 2 microns. This is clearly not a conversion-layer configuration. The diodes were exposed to thermal neutrons generated from a paraffin moderated plutonium-beryllium source in moderated and unmoderated, as well as shielded and unshielded experimental configurations, where the expected energy peaks at at 2.31 MeV and 2.8 MeV were clearly observed, albeit with some incomplete charge collection typical of thinner diode structures. The results are compared with other boron based thin film detectors and literature models.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2007
References
REFERENCES
- 1
- Cited by