Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:25:15.588Z Has data issue: false hasContentIssue false

Alkoxide Doping of GaAs During Organometallic Vapor Phase Epitaxy

Published online by Cambridge University Press:  22 February 2011

Y. Park
Affiliation:
Department of Materials Science and Eng., Carnegie Mellon University, Pittsburgh, PA 15213
M. Skowronski
Affiliation:
Department of Materials Science and Eng., Carnegie Mellon University, Pittsburgh, PA 15213
T. M. Rosseel
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

Doping of GaAs with dimethylaluminum methoxide and its effects have been studied during metalorganic vapor phase epitaxy. Oxygen concentration decreases exponentially with increasing growth temperature and the activation energy equal to 1.8 eV.Increase of oxygen content with decrease of V/III ratio indicates that oxygen most likely occupies arsenic site. Photoluminescence intensity was observed to decrease with increasing oxygen contentand three new deep level luminescence peaks appeared at 75, 96, and 160 meV below the band gap. This, together with the fact that as-grown layers are fully depleted, indicates that oxygen is electrically active in OMVPE GaAs and forms deep non-radiative recombinationcenters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hata, M., Fukuhara, N., Zempo, Y., Isemura, M., Yako, T. and Maeda, T., J. Cryst. Growth, 93, 543 (1988).Google Scholar
2 Casey, H.C., Cho, A.Y., Lang, D.V., Nicollian, E.H. and Foy, P.W., J. Appl. Phys., 50, 3484 (1979).Google Scholar
3 Terao, H. and Sunakawa, H., J. Cryst. Growth, 68, 157 (1984).Google Scholar
4 Wallis, R.H., Forte-Poisson, M.A.D., Bonnet, M., Beuchet, G. and Duchemin, J.P., Inst. Phys. Conf. Ser., 56, 73 (1981).Google Scholar
5 Goorsky, M.S., Kuech, T.F., Cardone, F., Mooney, P.M., Scilla, G.J. and Potemski, R.M., Appl. Phys. Lett., 58, 1979 (1991).Google Scholar
6 Goorsky, M.S., Kuech, T.F., Mooney, P.M., Cardonne, F. and Potemski, R.M., Mat. Res. Soc. Symp., 204, 177 (1991).Google Scholar
7 Stringfellow, G.B. and Horn, G., Appl. Phys. Lett., 34, 794 (1979).Google Scholar
8 Tsai, M.J., Tashima, M.M., Twu, B.L. and Moon, R.L., Inst. Phys. Conf. Sen, 65, 85 (1982).Google Scholar
9 Bhattacharya, P.K., Subramanian, S. and Ludowise, M.J., J. Appl. Phys., 55, 3664 (1984).Google Scholar
10 Akimoto, K., Kamada, M., Taira, K., Arai, M. and Watanabe, N., J. Appl. Phys., b 59, 2833 (1986).Google Scholar
11 Foxon, C.T., Clegg, J.B., Woodbridge, K., Hilton, D., Dawson, P. and Blood, P., J. Vac. Sci. Technol. B, 3, 703 (1985).Google Scholar
12 Amano, C., Ando, K. and Yamaguchi, M., J. Appl. Phys., 63, 2853 (1988).Google Scholar
13 Andre, J.P., Schiller, C., Mitonneau, A., Briere, A. and Aupied, J.Y., Inst. Phys. Conf. Sen, 65, 117 (1983).Google Scholar
14 Morkoc, H., Cho, A.Y. and Radice, C., J. Appl. Phys., 51, 4882 (1980).Google Scholar
15 Kim, B., Tserng, H.Q. and Lee, J.W., IEEE Electron Devices Lett., EDL-7, 638 (1986).Google Scholar
16 Hida, H., Okamoto, A., Toyoshima, H. and Ohata, K., IEEE Trans. Electron Devices, ED-34, 1448 (1987).Google Scholar