Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:45:02.316Z Has data issue: false hasContentIssue false

Alignment of Adsorbate-Induced Defects on Silicon(001) 2×1 Observed with STM

Published online by Cambridge University Press:  21 February 2011

J. V. Seiple
Affiliation:
The Ohio State University, Department of Physics, 174 W. 18th Ave., Columbus, OH 43210
J. P. Pelz
Affiliation:
The Ohio State University, Department of Physics, 174 W. 18th Ave., Columbus, OH 43210
Get access

Abstract

We have observed that a build-up of gas-phase adsorbates on Si(001) followed by mild annealing at temperatures in the range 500 - 800°C can lead to a quasi-periodic array of line defects, which in STM images appear similar to lines of dimer vacancies aligned perpendicular to the surface dimer rows. These line defects can be eliminated by annealing at temperatures above 900°C, indicating that Ni contamination is not the cause. Adsorbed O2 or H2O followed by an anneal do not exhibit the same behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Müller, K., Lang, E., Hammer, L., Grimm, W., Heilmann, P., and Heinz, K., in Determination of surface structure bv LEED, edited by Marcus, P.M. and Jona, J. (Plenum Press, New York, 1984) pp. 483491.Google Scholar
2 McRae, E.G., Malic, R.A., Kapilow, D.A., Rev. Sci. Instrum. 56, 2077 (1985).Google Scholar
3 Martin, J.A., Savage, D.E., Moritz, W., and Lagally, M.G., Phys. Rev. Lett. 56, 1936 (1986).Google Scholar
4 Aruga, T. and Murata, Y., Phys. Rev. B 34, 5654 (1986).Google Scholar
5 Kato, K., Ide, T., Miura, S., Tamura, A., and Ichinokawa, T., Surf. Sci. 194, L87 (1988).Google Scholar
6 Rohlfing, D.M., Ellis, J., Hinch, B.J., Allison, W., and Willis, R.F., Surf. Sci. 207, L955 (1989).CrossRefGoogle Scholar
7 Niehus, H., Köhler, U.K., Copel, M., and Demuth, J.E., J. of Microscopy 152, 735 (1988).Google Scholar
8 Sakurai, T., Hashizume, T., Kamiya, I., Hasegawa, Y., Sano, N., Pickering, H.W., and Sakai, A., Progress in Surf. Sci. 33, 3 (1990).Google Scholar
9 Zandvliet, H.J.W., Elswijk, H.B., van Loenen, E.J., and Tsong, I.S.T., Phys. Rev. B 46, 7581 (1992).Google Scholar
10 Feil, H., Zandvliet, H.J.W., Tsai, M.-H., Dow, J.D., and Tsong, I.S.T., Phys. Rev. Lett. 69, 3076 (1992).Google Scholar
11 Seiple, J.V. and Pelz, J.P. (in preparation).Google Scholar
12 Pelz, J.P. and Koch, R.H., Phys. Rev. B 42, 3761 (1990).CrossRefGoogle Scholar
13 Cahill, D.G. and Avouris, Ph., Appl. Phys. Lett. 60, 326 (1992).Google Scholar
14 Engstrom, J.R., Nelson, Mark M. and Thomas, Engel, Surf. Sci. 215, 437 (1989).Google Scholar
15 Sinniah, K., Sherman, M.G., Lewis, L. B., Weinberg, W.H., Yates, J.T. and Janda, K.C., Phys. Rev. Lett. 62, 567 (1989).Google Scholar