Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:53:41.056Z Has data issue: false hasContentIssue false

Al2O3 Composites Containing Fe, Nb and Zr Aluminides

Published online by Cambridge University Press:  15 February 2011

D. E. García
Affiliation:
Advanced Ceramics Group, Technische Universität Hamburg-Harburg, 21071 Hamburg, Germany
S. Schicker
Affiliation:
Advanced Ceramics Group, Technische Universität Hamburg-Harburg, 21071 Hamburg, Germany
J. Bruhn
Affiliation:
Advanced Ceramics Group, Technische Universität Hamburg-Harburg, 21071 Hamburg, Germany
A. Krupp
Affiliation:
Advanced Ceramics Group, Technische Universität Hamburg-Harburg, 21071 Hamburg, Germany
R. Janssen
Affiliation:
Advanced Ceramics Group, Technische Universität Hamburg-Harburg, 21071 Hamburg, Germany
N. Claussen
Affiliation:
Advanced Ceramics Group, Technische Universität Hamburg-Harburg, 21071 Hamburg, Germany
Get access

Abstract

A reactive powder-processing technique involving controlled exothermic solid-state reactions between Al and oxides has been used to produce nearly fully dense composites with interpenetrating networks of aluminides and Al2O3. The process consists of the in situ formation of aluminides and Al2O3 from compacts of intensively milled oxide-Al powder mixtures followed by pressureless sintering. The reactions take place usually at temperatures below the melting point of Al. At temperatures >1000°C, the reaction products start to sinter yielding microstructures with very fine and uniform phase distribution. The present paper discuses processing parameters such as attrition milling, heating cycle and atmosphere controlling microstructural development and mechanical properties of Al2O3 composites containing Fe, Nb and Zr aluminides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sauthoff, G., Intermetallics. VCH Publishers, Weinheim, Germany (1995).Google Scholar
2. Intermetallic Compounds - Principles and Practice Vol. 1 and 2, Westbrook, J. H. and Fleischer, R. L. (Eds) Wiley & Son (1995)Google Scholar
3. Claussen, N., Garcia, D. E., Janssen, R., J. Mater. Res 11 2884 (1996).Google Scholar
4. Garcia, D. E., Bruhn, J., Schicker, S., Janssen, R, Claussen, N, pp 219–44 in Ceramic Trans, Vol. 79 - Advanced Synthesis and Processing of Composites and Advanced Ceramics IL The American Ceramic Society, Westerville, OH, (1996).Google Scholar
5. Garcia, D. E., Schicker, S., Bruhn, J., Janssen, R., Claussen, N., J. Am. Ceram. Soc (in press).Google Scholar
6. Goldschmidt, T.H., German Patent No 96 317 (13 March 1895).Google Scholar
7. Metals Handbook 9th Edition Vol. 6 - Welding, Brazing, and Soldering. Thermit Welding pp. 692704. Powder Metallurgy American Society for Metals, OH, (1983)Google Scholar
8. Wang, L. L., Munir, Z. A., Maximov, Y. M., J. Mater Sci. 28 3693 (1993).Google Scholar
9. Pretorious, R., Vredenberg, A. M, Saris, F. W., de Reus, R., J. Appl. Phys. 70 3636 (1991).Google Scholar
10. Jorda, J. L., Flükiger, R., Muller, J., J. Less-Common Met. 75 227 (1980).Google Scholar
11. Barth, E. P., Tien, J. K., Uejo, S., Kambara, S., Mat. Sci. and Eng. A 153, 398 (1992).Google Scholar