Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-06T04:08:56.913Z Has data issue: false hasContentIssue false

Air-Liquid Foams, Concentrated Direct Emulsion and Soft Chemistry Toward Hierarchically Organized Porous Silica Monoliths

Published online by Cambridge University Press:  01 February 2011

F. Carn
Affiliation:
Centre de Recherche Paul Pascal CNRS UPR 8641, 115 Ave Albert Schweitzer, 33600 Pessac, France
A. Colin
Affiliation:
Laboratoire du Futur, UMR CNRS-Rhodia FRE2771, IECB, 2 rue Robert Escarpit, 33607 Pessac, France. [email protected]
M.-F. Achard
Affiliation:
Centre de Recherche Paul Pascal CNRS UPR 8641, 115 Ave Albert Schweitzer, 33600 Pessac, France
R. Backov
Affiliation:
Centre de Recherche Paul Pascal CNRS UPR 8641, 115 Ave Albert Schweitzer, 33600 Pessac, France
Get access

Abstract

Hierarchically organized matter appears today a strong and highly competitive field of research mainly induced by the wide scope of applications expected. In this context, chemistry of shapes appears as a strong interdisciplinary field of research combining soft chemistry and soft matter. Hierarchical inorganic porous monoliths can be obtained using either air-liquid foams or biliquid foams as macroscopic patterns while lyotropic mesophases are employed to promote porosity at the mesoscale. By controlling the air-liquid foam's water liquid fraction or the emulsions oil fraction we can design the inorganic porous texture at the macroscale (i.e. cell sizes and shapes as well as the Plateau borders thickness). Those stategies lead to the formation of materials with characteristics that resemble aerogels.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carn, F., Colin, A., Achard, M.-F, Deleuze, H., Backov, R., Adv. Mater., 2004, 16, 140.Google Scholar
2. Carn, F., Colin, A., Achard, M-F., Sellier, E., Birot, M., Deleuze, H., Backov, R., J. Mater. Chem. 2004, 14, 1370.Google Scholar
3. Wang, D., Caruso, R. A., Caruso, F. Chem. Mater. 2001, 13, 364.Google Scholar
4. Hall, S. R., Bolger, H., Mann, S., Chem. Commun., 2003, 2784.Google Scholar
5. Mann, S., Nature, 1988, 332, 119;Google Scholar
Archibald, D.D., Mann, S., Nature, 1993, 364, 430;Google Scholar
Yang, H., Kuperman, A., Coombs, N., Mamiche-Afara, S., Ozin, G.A., Nature, 1996, 379, 703.Google Scholar
6. Chandrappa, G.T., Steunou, N., Livage, J., Nature, 2002, 416, 702.Google Scholar
7. Bagshaw, S.A., Chem. Com., 1999, 767.Google Scholar
8. Carn, F., Colin, A., Achard, M.F., Deleuze, H., Sanchez, C., Backov, R., Adv. Mat.(in press) Google Scholar
9. Carn, F., Steunou, N., Colin, A., Livage, J., Backov, R., Chem. Mat.(in press) Google Scholar
10. Phelan, R., Weaire, D., Peters, E.A.J.F., Verbist, G., J. Phys.:Condens. Matter, 1996, 8, 475;Google Scholar
Weaire, D., Pittet, N., Hutzler, S., Phys. Rev. Lett., 1993, 71, 2670.Google Scholar
11. Brinker, C.J., Scherer, G.W., in Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego 1990.Google Scholar
12. Webbs, P. A. and Orr, C., Surface area and Pores structure by Gas Adsorption, in Analytical Methods in Fine Particles Technology, Micromeritics, Norcross, GA, 1997.Google Scholar
13. Mooney, M., J. Colloid Interface Sci., 1951, 6, 162.Google Scholar
14. Mason, T.G., Bibette, J., and Weitz, D.A., J. Colloid Interface Sci., 1996, 179, 439;Google Scholar
Lemlich, R.A., J. Colloid Interface Sci., 1978, 64, 107 Google Scholar
15. Bagshaw, S.A., Prouzet, E., Pinnavaia, T., Science, 1995, 269, 1242.Google Scholar
16. Hüsing, N., Schubert, U., Angew. Chem. Int. Ed., 1998, 37, 23.Google Scholar