Article contents
AFM Study of the Fluence-Dependent Modification of the Surface of YSZ Due to Argon Ion Irradiation
Published online by Cambridge University Press: 01 February 2011
Abstract
Yittria stabilized zirconia (YSZ) has long been of interest as a promising material for nuclear energy applications. It is the cubic form of zirconium oxide stabilized at room temperature by the addition of yttria. Previous studies of radiation damage in YSZ focused primarily on microstructural changes in the bulk or in the near surface layer whereas irradiation induced changes on the surface received little attention. Here we use atomic force microscopy, AFM, to study the fluence-dependent generation of surface modifications to YSZ due to 150 keV Ar+ ion implantation at fluences from 3×1015 to 1×1017 ions/cm2. The microstructural changes in the near surface region were previously investigated by Rutherford backscattering spectrometry in channeling geometry (RBS/C). Further, we investigated implantation in (100), (110), and (111) oriented single crystals of YSZ to explore differences in crystal orientation sensitivity to damage to ion irradiation. At the highest fluence, a dense packing of large round surface hillocks was observed. The ion induced surface modifications revealed by AFM differ slightly from the bulk lattice damage measured by RBS, although both indicate that under these implantation conditions, the (110) oriented crystal shows the most radiation damage resistance. The mean size of the hillocks scaled with concentration of implanted Ar atoms.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2010
References
- 1
- Cited by