Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T09:23:05.786Z Has data issue: false hasContentIssue false

AFM Analysis of ECR Dry-Etched Ingap, Alinp and Algap

Published online by Cambridge University Press:  15 February 2011

F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill NJ 07974
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill NJ 07974
J. R. Lothian
Affiliation:
AT&T Bell Laboratories, Murray Hill NJ 07974
J. Lopata
Affiliation:
AT&T Bell Laboratories, Murray Hill NJ 07974
J. A. Caballero
Affiliation:
University of Florida, Gainesville FL 32611
J. W. Lee
Affiliation:
University of Florida, Gainesville FL 32611
S. J. Pearton
Affiliation:
University of Florida, Gainesville FL 32611
M. W. Cole
Affiliation:
US Army Research Laboratories, Ft. Monmouth NJ 07703
Get access

Abstract

The etch rates of InGaP, AlInP and AlGaP increases dramatically with microwave power in ECR BCl3- or CH4/H2-based discharges, reaching values near 1μm·min−1 at 1000W, The surface morphologies of these materials however behave much differently as the microwave power is increased. For BCl3 etching of InGaP the surface RMS roughness decreases from 36nm at 250W to 2nm at 1000W. For AlInP, there is little change in surface morphology, whereas for the common binary component of these two materials, InP, the surface becomes very rough at high powers (>60nm RMS). By contrast, the morphologies of the three ternaries remain smooth over a wide range of conditions with CH4/H2/Ar. The AFM analysis, coupled with AES enables us to understand these different responses in terms of volatility of the respective chloride, metalorganic and hydride etch products.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pearton, S. J., Int. J. Mod. Phys. B 8 1781 (1994).Google Scholar
2. Niggebrugge, U., Klug, M. and Garus, G., Inst. Phys. Conf. Ser. 79 367 (1985).Google Scholar
3. Melville, D. L., Simmons, J. G. and Thompson, D. A., J. Vac. Sci. Technol. B 11 2038 (1993).Google Scholar
4. Pearton, S. J., Hobson, W. S., Baiocchi, F. A., Emerson, A. B. and Jones, K. S. B 8 57 (1990).Google Scholar
5. Constantine, , Barratt, C., Pearton, S. J., Ren, F., Lothian, J., Appl. Phys. Lett. 61 2899 (1992).Google Scholar
6. Constantine, C., Barratt, C., Pearton, S. J., Ren, F. and Lothian, J., Appl. Phys. Lett. 61 2899 (1992).Google Scholar
7. Shul, R. J., Schneider, R. P. and Constantine, C., Electron. Lett 30 817 (1994).Google Scholar
8. Constantine, C., Barratt, C., Pearton, S. J., Ren, F. and Lothian, J. R., Electron. Lett. 28 1749 (1992).Google Scholar
9. Thomas, S., Ko, K. K. and Pang, S. W., J. Vac. Sci. Technol. A 13 894 (1995).Google Scholar
10. McLane, G. F., Cole, M. W., Eckart, D. W., Cooke, P., Moekirk, R. and Meyyappan, M., J. Vac. Sci. Technol. A 11 1753 (1993).Google Scholar