Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T05:39:51.304Z Has data issue: false hasContentIssue false

Advanced Wet Etch Bulk Micromachining in {100} Silicon Wafers

Published online by Cambridge University Press:  31 January 2011

Prem Pal
Affiliation:
[email protected], Nagoya University, Micro and Nano Systems Engineering, Nagoya, Japan
Kazuo Sato
Affiliation:
[email protected], Nagoya University, Micro and Nano Systems Engineering, Nagoya, Japan
Get access

Abstract

In this work we have developed novel microfabrication processes using wet anisotropic etchants to perform advanced bulk micromachining in {100}Si wafers for the realization of microelectromechanical systems (MEMS) structures with new shapes. The etching is performed in two steps in pure and Triton-X-100 [C14H22O(C2H4O)n, n = 9-10] added 25 wt% tetramethyl ammonium hydroxide (TMAH) solutions. The local oxidation of silicon (LOCOS) is attempted after the first anisotropic etching step in order to protect the exposed silicon. Two types of structures (fixed and freestanding) are fabricated. The fixed structures contain perfectly sharp corners and edges. Thermally grown silicon dioxide (SiO2) is used for the fabrication of freestanding structures. Present research is an approach to fabricate advanced MEMS structures, extending the range of 3D structures fabricated by silicon wet anisotropic etching.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Venstra, W. J. and Sarro, P. M. Microelectron. Eng. 6768 (2003).Google Scholar
2 Pal, P. and Sato, K. J. Micromech. Microeng. 19 55003 (2009).Google Scholar
3 Kwon, J. W. and Kim, E. S. Sens. and Actuat.A 9798 (2002).Google Scholar
4 Gianchandani, Y. B. and Najafi, K. J. Microelectromech. Syst. 1 77 (1992).Google Scholar
5 Shi, K. Tang, J. Zhang, L. Zhou, Y. Qu, D. Sun, L. and Tian, Z. J. Solid State Electrochem. 9 398 (2005).Google Scholar
6 Zubel, I. and Kramkowska, M. J. Micromech. Microeng. 15 485 (2005).Google Scholar
7 Yang, C. R. Yang, C. H. and Chen, P. Y. J. Micromech. Microeng. 15 2028 (2005).Google Scholar
8 Pal, P. Sato, K. Gosalvez, M. A. and Shikida, M. J. Micromech. Microeng. 17 2299 (2007).Google Scholar
9 Resnik, D. Vrtacnik, D. Aljancic, U. Mozek, M. and Amon, S. J. Micromech. Microeng. 15 1174 (2005).Google Scholar
10 Tang, B. Pal, P. Gosalvez, M. A. Shikida, M. Sato, K. Amakawa, H. and Itoh, S. Sens. and Actuat. A in press, doi:10.1016/j.sna.2009.10.017Google Scholar
11 Pal, P. Sato, K. Hida, H. Gosalvez, M. A. Kimura, Y. Ishibashi, K. and Niwano, M. Proc. Transducers-2009, 2009, pp. 751754.Google Scholar
12 Gosalvez, M. A. Pal, P. Tang, B. and Sato, K. Sens. and Actuat. A (in press).Google Scholar
13 Jeong, O. C. and Yang, S. S. Sens. and Actuat. A80 62 (2000).Google Scholar
14 Pal, P. and Chandra, S. J. Micromech. Microeng. 14 1416 (2004).Google Scholar
15 Gad-El-Hak, M. MEMS Applications: The MEMS Handbook, Boca Raton, FL: CRC Press, 2005.Google Scholar