Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:35:06.180Z Has data issue: false hasContentIssue false

Advanced Resonant-Ultrasound Spectroscopy for Studying Anisotropic Elastic Constants of Thin Films

Published online by Cambridge University Press:  01 February 2011

Hirotsugu Ogi
Affiliation:
Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560-8531, Japan
Nobutomo Nakamura
Affiliation:
Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560-8531, Japan
Hiroshi Tanei
Affiliation:
Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560-8531, Japan
Masahiko Hirao
Affiliation:
Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560-8531, Japan
Get access

Abstract

This paper presents two advanced acoustic methods for the determination of anisotropic elastic constants of deposited thin films. They are resonant-ultrasound spectroscopy with laser-Doppler interferometry (RUS/Laser method) and picosecond-laser ultrasound method. Deposited thin films usually exhibit elastic anisotropy between the film-growth direction and an in-plane direction, and they show five independent elastic constants denoted by C11,C33,C44,C66 and C13 when the x3 axis is set along the film-thickness direction. The former method determines four moduli except C44, the out-of-plane shear modulus, through free-vibration resonance frequencies of the film/substrate specimen. This method is applicable to thin films thicker than about 200 nm. The latter determines C33, the out-of-plane modulus, accurately bymeasuring the round-trip time of the longitudinal wave traveling along the film-thickness direction. This method is applicable to thin films thicker than about 20 nm. Thus, combination of these two methods allows us to discuss the elastic anisotropy of thin films. The results for Co/Pt superlattice thin film and copper thin film are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nix, W., Metall. Trans. A 20A, 2217 (1989).Google Scholar
2. Suwito, W., Martin, D., Cunningham, S., and Read, D., J. Appl. Phys. 85, 3519 (1999).Google Scholar
3. Huangand, H. and Spaepen, F., Acta Mater. 48, 3261 (2000).Google Scholar
4. Takashima, K., Koyama, S., Nakai, K. and Higo, Y., 2002 MRS Fall Meeting, J3.3, (2002).Google Scholar
5. Ogura, A., Tarumi, R., Shimojo, M., Takashima, K., Higo, Y., Appl. Phys. Lett. 79, 1042 (2001).Google Scholar
6. Mizubayashi, H., Matsuno, J., and Tanimoto, H., Scripta Mater. 41, 443 (1999).Google Scholar
7. Sakai, S., Tanimoto, H., and Mizubayashi, H., Acta Mater. 47, 211 (1999).Google Scholar
8. Rowell, N. and Stegeman, G., Phys. Rev. B 18, 2598 (1978).Google Scholar
9. Moretti, A., Robertson, W., Fisher, B., and Bray, R., Phys. Rev. B 31, 3361 (1985).Google Scholar
10. Sandercock, J., in Light Scattering in Solids III, edited by Cardona, M. and Güntherodt, G., Topics in Applied Physics Vol. 51 (Springer, New York, 1982), p. 173.Google Scholar
11. Moreau, A., Ketterson, J., and Huang, J., Mater. Sci. Eng. A A126, 149 (1990).Google Scholar
12. Kim, J., Achenbach, J., Shinn, M., and Barnett, S., J. Mater. Res. 7, 2248 (1992).Google Scholar
13. Kiessig, H., Annalen der Physik 10, 769 (1931).Google Scholar
14. Nakamura, N., Ogi, H., Ono, T., and Hirao, M., J. Appl. Phys. 97, 013532 (2005).Google Scholar
15. Ohno, I., J. Phys. Earth 24, 355 (1976).Google Scholar
16. Migliori, A and Sarrao, J., Resonant Ultrasound Spectroscopy (Wiley-Interscience, New York, 1997).Google Scholar
17. Ledbetter, H., Fortunko, C., and Heyliger, P., J. Appl. Phys. 78, 1542 (1995).Google Scholar
18. Ogi, H., Dunn, M., Takashima, K., and Ledbetter, H., J. Appl. Phys. 87, 2769 (2000).Google Scholar
19. Ohno, I., Phys. Chem. Minerals, 17, 371 (1990).Google Scholar
20. Ogi, H., Ledbetter, H., Kawasaki, Y., and Sato, K., J. Appl. Phys. 92, 2451 (2002).Google Scholar
21. Ogi, H., Nakamura, N., Sato, K., Hirao, M., and Uda, S., IEEE Trans. Ultrason. Ferroelectr. Freq. Ctrl. 50, 553 (2003).Google Scholar
22. Ogi, H., Fukunaga, M., Hirao, M., and Ledbetter, H., Phys. Rev. B 69, 024104 (2004).Google Scholar
23. Ogi, H., Shimoike, G., Hirao, M., Takashima, K., and Higo, Y., J. Appl. Phys. 91, 4857 (2002).Google Scholar
24. Heyliger, P., J. Acous. Soc. Am. 107, 1235 (2000).Google Scholar
25. Hurley, D. and Wright, O., Opt. Lett. 24, 1305 (1999).Google Scholar
26. Saito, T., Matsuda, O., and Wright, O. B., Phys. Rev. B 67, 205421 (2003).Google Scholar
27. Matsuda, O., Wright, O. B., Hurley, D. H., Gusev, V. E., and Shimizu, K., Phys. Rev. Lett. 93, 095501 (2004).Google Scholar
28. Nakamura, N., Ogi, H., Ono, T., and Hirao, M., Appl. Phys. Lett. 86 (2005), in press.Google Scholar
29. Kingetsu, T., Kamada, Y., and Yamamoto, M., Sci. Tech. Adv. Mater. 2, 331 (2001).Google Scholar
30. Kamada, Y., Hitomi, Y., Kingetsu, T., and Yamamoto, M., J. Appl. Phys. 90, 5104 (2001).Google Scholar
31. Hiki, Y. and Granato, A., Phys. Rev. 144, 411 (1966).Google Scholar
32. Ogi, H., Suzuki, N. and Hirao, M., Metall. Mater. Trans. A, 29A, 2987 (1998).Google Scholar
33. Ogi, H., Kai, S., Ledbetter, H., Tarumi, R., Hirao, M., and Takashima, K., Acta Mater. 52, 2075 (2004).Google Scholar
34. Nakamura, N., Ogi, H., and Hirao, M., Acta Mater. 52, 765 (2004).Google Scholar
35. Hirao, M. and Ogi, H., EMATs for Science and Industry (Kluwer-Academic, Boston, 2003).Google Scholar