Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:42:40.312Z Has data issue: false hasContentIssue false

Advanced Ceramics and Glass-Ceramics for Immobilisation of ILW and HLW

Published online by Cambridge University Press:  23 March 2012

E. R. Vance
Affiliation:
ANSTOsynroc, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232, Australia
M. W. A. Stewart
Affiliation:
ANSTOsynroc, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232, Australia
S. Moricca
Affiliation:
ANSTOsynroc, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232, Australia
Get access

Abstract

Since the 1970s there has been a steady increase in research on candidate ceramic and glass-ceramics for immobilisation of HLW and ILW, both from the aspects of crystal-chemical design and processing technology. The variety of ceramics and glass-ceramics designed for different types of HLW and ILW will be presented, notably those which are problematic for vitrification. Several of these materials are optimally processed by hot isostatic pressing (HIP), a technology which can consolidate calcined intermediate-level and high-level nuclear waste. Thus we are targeting such wastes for development of alternative waste forms. The essential process steps during the HIP cycle will be outlined. Effective consolidation of a wide variety of tailored glass-ceramic and ceramic waste forms has been demonstrated. The principal advantages of the HIP technology include negligible offgas during the high temperature consolidation step, relatively small footprint, and high waste/volume loadings. While it can be argued that the “nuclear waste problem” is essentially solved technically, at least with current regulatory guidelines, different perceptions of the “best” waste form and processing method for a given waste, together with the general current lack of agreed locations for final repositories, or even interim storage sites, create uncertainties.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hatch, L. P., American Scientist, 41, 410 (1953).Google Scholar
2. McCarthy, G. J., White, W. B. and Pfoertsch, D. E., Mater. Res. Bull. 12, 1239 (1978).10.1016/0025-5408(78)90215-5Google Scholar
3. McCarthy, G. J., Nucl. Tech., 32, 92 (1977).10.13182/NT77-A31741Google Scholar
4. Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W. and Major, A., Nature (London), 278, 219 (1979).10.1038/278219a0Google Scholar
5. Ringwood, A. E., Kesson, S. E., Reeve, K. D., Levins, D. M. and Ramm, E. J., Radioactive Waste Forms for the Future, ed. Lutze, W. and Ewing, R. C., (North-Holland. Amsterdam, 1988) pp. 233334.Google Scholar
6. Ewing, R. C., Canad. Mineral., 39[3] 6976 (2001).10.2113/gscanmin.39.3.697Google Scholar
7. Carpena, J., Boyer, L., Fialin, M., Kienast, J-R. and Lacout, J-L., Acad, C. R.. Sci. Paris/Earth and Planetary Sciences, 333, 373 (2001).Google Scholar
8. Stefanovsky, S. V., Yunditsev, S. Y., Perevalov, S. A., Startseva, I. V. and Varlakova, G. A., J. Alloys and Compounds, 444-445, 618 (2007).10.1016/j.jallcom.2007.01.097Google Scholar
9. Hayward, P. J., Radioactive Waste Forms for the Future. ed. Lutze, W. and Ewing, R. C., (North-Holland, Amsterdam, 1988) pp. 427493.Google Scholar
10. Roy, R., Vance, E. R. and Alamo, J., Mater. Res. Bull., 17, 585 (1982).10.1016/0025-5408(82)90040-XGoogle Scholar
11. Tamain, C., Ozgumus, A., Dacheux, N., Garrido, F., Thomé, L., Corbel, C. and Mendeès, E., J. Radioanalytical Nucl. Chem. 273, 597 (2007).10.1007/s10967-007-0917-3Google Scholar
12. Cochran, S. G., Dunlop, W. H., Edmunds, T. A., MacLean, L. M. and Gould, T. H., UCRL-ID-128705(1997); Record of Decision for the Surplus Plutonium Disposition. Final Environmental Impact Statement. January 4, 2000, US Department of Energy.Google Scholar
13. Vance, E. R., Jostsons, A., Moricca, S., Stewart, M. W. A., Day, R. A., Begg, B. D., Hambley, M. J., Hart, K. P. and Ebbinghaus, B. B., Ceramics Transactions (Environmental Issues and Waste Management Technologies IV). Vol 93, ed. Marra, J.C. and Chandler, G.T. (American Ceramic Society, Westerville, OH, USA, 1999), p.323.Google Scholar
14. Vance, E. R., J. Aust. Cer. Soc., 42, 10 (2006).Google Scholar
16. Vance, E. R., Moricca, S., Begg, B. D., Stewart, M. W. A., Zhang, Y. and Carter, M. L., 5th Forum on New Materials Part B, (Trans Tech Publications Ltd., Switzerland, 2010) pp. 130–5.Google Scholar
17. Bolon, W. D., Herzog, J. D. and Olson, A. L., Status Report: The Glass-Ceramic Processing Flowsheet for ICPP High-Level Waste, WINCO-1091, Westinghouse Idaho Nuclear Company, Inc., 1991 Google Scholar
18. Vance, E. R., Davis, J., Olufson, K., Chironi, I., Karatchetvseva, I. and Farnan, I., J. Nucl. Mater., accepted for publication.Google Scholar
19. Larker, H. T., Scientific Basis for Nuclear Waste Management, ed. McCarthy, G. J., (Plenum, New York and London, 1979), p.207 10.1007/978-1-4615-9107-8_24Google Scholar
20. Werme, L. O., Scientific Basis for Nuclear Waste Management XXIII, ed. Smith, R. W. and Shoesmith, D. W., (Materials Research Society, Warrendale, PA, USA, 2000), p.77 Google Scholar
21. Bowyer, W. H., Scientific Basis for Nuclear Waste Management XXIX, ed. Van Iseghem, P., (Materials Research Society, Warrendale, PA, USA, 2006), p.829.Google Scholar
22. Morgan, P. D. E., Clarke, D. R., Jantzen, C. M. and Harker, A. B., J. Amer. Ceram. Soc., 64, 249 (1981).10.1111/j.1151-2916.1981.tb09597.xGoogle Scholar
23. Hoenig, C., Otto, R. and Campbell, J., UCRL-53392 (1983).Google Scholar
24. Vance, E. R., Perera, D. S., Moricca, S., Aly, Z. and Begg, B. D., J. Nucl. Mater., 341, 93 (2005).10.1016/j.jnucmat.2005.01.011Google Scholar
25. Vinjamuri, K., in: Environmental and Waste Management Issues in the Ceramic Industry II, ed. Bickford, D., Bates, S., Jain, V. and Smith, G., (American Ceramic Society, Westerville, OH, USA, 1994), p.3.Google Scholar
26. Meaker, T. F., Ramsey, W. G., Pareizs, J. M., Karraker, D. G. and Day, D. E., Environmental Issues and Waste Management Technologies II, ed. Jain, V. and Peeler, D., (American Ceramic Society, Westerville, OH, USA, 1996), p.409.Google Scholar
27. Carter, M. L., Gillen, A. L., Olufson, K. and Vance, E. R., J. Amer. Ceram. Soc., 92, 1112 (2009).10.1111/j.1551-2916.2009.03021.xGoogle Scholar
28. Lee, H.-S., Oh, G. -H., Lee, Y. -S., Kim, I. -T. and Lee, J. H., J. Nucl. Sci. Tech. 46, 392 (2009).10.1080/18811248.2007.9711545Google Scholar
29. Ikeda, Y., Takashima, Y., Kobayashi, H. and Igarishi, H., J. Nucl. Sci. and Tech., 32, 1138 (1995).10.1080/18811248.1995.9731828Google Scholar
30. Moschetti, T. J., Johnson, S. G., DiSanto, T., Noy, M. H., Warren, A. R., Sinkler, W., Goff, K. M. and Bateman, K. J., Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries VI, ed. Spearing, D. R., Smith, G. L. and Putnam, R. L., American Ceramic Society, Westerville, OH, USA (2001), p.329.Google Scholar
31. He, Y., Bao, W. and Song, C., J. Nucl. Mater. 305, 202 (2002).10.1016/S0022-3115(02)00920-0Google Scholar
32. Strachan, D. M. and Babad, H., Ceramics in Nuclear Waste Management, CONF-790420, US Department of Energy, 1979.Google Scholar
33. Sheppard, G. P., Hriljce, J. A., Maddrell, E. R. and Hyatt, N. C., Scientific Basis for Nuclear Waste Management XXIX, ed. Van Iseghem, P., (Materials Research Society, Warrendale, PA, USA, 2006) p.775.Google Scholar
34. Migge, H., Scientific Basis for Nuclear Waste Management XII, ed. Lutze, W. and Ewing, R. C., Materials Research Society, Pittsburgh, PA, USA (1989), pp.205213.Google Scholar
35. Stewart, M. W. A., Vance, E. R. and Day, R. A., CD-ROM paper 4362, WM ’04, Tucson, AZ, USA (2004).Google Scholar
36. Carter, M. L., Stewart, M. W. A., Vance, E. R., Begg, B. D., Moricca, S. and Tripp, J., Proceedings of Global 2007: Advanced Nuclear Fuel Cycles and Systems, Boise, ID, United States, Sept. 9-13, 2007 (2007), p.1022.Google Scholar
37. den Exter, M. J., Neumann, S. and Tomasberger, T., Scientific Basis for Nuclear Waste Management XXIX, ed. Van Iseghem, P., Materials Research Society, Warrendale, PA, USA (2006), p.567 Google Scholar
38. Carter, M. L., Li, H., Zhang, Y., Vance, E. R. and Mitchell, D. R. G., J. Nucl. Mater., 384, 322 (2009).10.1016/j.jnucmat.2008.12.042Google Scholar
39. Li, H., Zhang, Y., McGlinn, P. J., Moricca, S., Begg, B. D. and Vance, E. R., J. Nucl. Mater., 355, 136 (2006).10.1016/j.jnucmat.2006.05.014Google Scholar
40. Zhang, Y., Stewart, M. W. A., Li, H., Carter, M. L., Vance, E. R. and Moricca, S., J. Nucl. Mater., 395, 69 (2009).10.1016/j.jnucmat.2009.09.019Google Scholar
41. Whittle, K. R., Blackford, M. G., Aughterson, R. D., Smith, K. L., Lumpkin, G. R., Zaluzec, N. J., J. Solid State Chem., 183, 2416 (2010).10.1016/j.jssc.2010.07.033Google Scholar
42. Lumpkin, G. R., Smith, K. L., Blackford, M. G., Whittle, K. R., Zaluzec, N. J., Ryan, E. A., Baldo, P, Amer. Mineral., 95, 192 (2010).10.2138/am.2010.3329Google Scholar
43. Vance, E. R., Zhang, Y. and Zhang, Z., J. Nucl. Mater., 400, 8 (2010).10.1016/j.jnucmat.2010.02.003Google Scholar
44. Vance, E.R., Zhang, Y., McLeod, T. and Davis, J., J. Nucl. Mater., 409, 221 (2011).10.1016/j.jnucmat.2010.12.241Google Scholar