Published online by Cambridge University Press: 25 February 2011
Alkylated arsenic compounds have shown some promise as alternatives to arsine as the group-V source gas for GaAs MOCVD. However, little is known about the fundamental chemical interactions of these compounds with the GaAs surface. We have investigated the adsorption and reactivity of trimethylarsenic (TMAs) on GaAs(100) using temperature programmed desorption (TPD), Auger electron spectroscopy, and LEED. For the exposures and temperatures studied, TMAs did not pyrolytically decompose on the GaAs(100). TPD results indicate that TMAs chemisorbs, apparently non-dissociatively, and desorbs ≅330 K. Multilayers of TMAs desorb ≅140–160 K. Exposure of adsorbed TMAs to 70 eV electrons results in irreversible decomposition of the molecule. After electron irradiation, TPD shows that methyl radicals desorb at 660 K, which corresponds to a desorption activation energy of ≅40 kcal/mol. At higher temperatures, As2, H2, C2H2, and a smaller amount of methyl radicals desorb, and a small coverage of carbon remains on the surface.