Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:05:33.840Z Has data issue: false hasContentIssue false

The Adhesive Glycoprotein of the Orb Web of Argiope Aurantia (Araneae, Araneidae)

Published online by Cambridge University Press:  15 February 2011

Edward K. Tillinghast
Affiliation:
University of New Hampshire, Department of Zoology, Durham, NH 03824USA
Mark A. Townley
Affiliation:
University of New Hampshire, Department of Zoology, Durham, NH 03824USA
Thomas N. Wight
Affiliation:
University of Washington, Department of Pathology, Seattle, WA 98195USA
Gerhard Uhlenbruck
Affiliation:
Universitäat zu Köln, Institut für Immunbiologie, Kerpener Straβe 15, D- 5000 Köln 41, Germany.
Eveline Janssen
Affiliation:
Universitäat zu Köln, Institut für Immunbiologie, Kerpener Straβe 15, D- 5000 Köln 41, Germany.
Get access

Abstract

A phosphorylated, glycoprotein preparation has been obtained from orb webs of the araneid spider Argiope aurantia. This preparation probably contains proteins from more than one gland type, but resolution of these proteins has not yet been achieved. Nevertheless, a major component appears to be the adhesive glycoprotein(s) from the adhesive spiral. A product of the aggregate glands, this glycoprotein(s) occurs as discrete nodules along the core fibers of the adhesive spiral, within the viscid, aqueous droplets.

The glycoprotein preparation has a high apparent molecular weight (> 200 kDa) and is polydisperse. The only monosaccharide constituent identified by gas-liquid chromatography or in lectin studies is N-acetylgalactosamine and this is at least primarily O-linked to threonine. By electron microscopy, linear, unbranched and apparently flexible filaments are observed. Phosphorylated serine and threonine residues are present in the preparation and glycine, proline and threonine together account for about 57 mole % of the preparation's amino acid content. Thus, in some, but not all, respects, this glycoprotein preparation is reminiscent of a secretory mucin.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Warburton, C., Quart. J. Microsc. Sci., N.S. 31, 29 (1890).Google Scholar
2. Peters, H. M., Z. Naturforsch. 10b, 395 (1955).Google Scholar
3. Work, R. W., Trans. Am. Microsc. Soc. 100, 1 (1981).Google Scholar
4. Apstein, C., Arch. Naturgesch. 55, 29 (1889).Google Scholar
5. Kavanagh, E. J. and Tillinghast, E. K., J. Morph. 160, 17 (1979).Google Scholar
6. Sekiguchi, K., Annot. Zool. Japon. 25, 394 (1952).Google Scholar
7. Fischer, F. G. and Brander, J., Hoppe-Seyler's Z. physiol. Chem. 320, 92 (1960).Google Scholar
8. Schildknecht, H., Kunzelmann, P., Krauβ, D., Kuhn, C., Naturwissenschaften 59, 98 (1972).Google Scholar
9. Vollrath, F., Fairbrother, W. J., Williams, R. J. P., Tillinghast, E. K., Bernstein, D. T., Gallagher, K. S., Townley, M. A., Nature 345, 526 (1990).Google Scholar
10. Townley, M. A., Bernstein, D. T., Gallagher, K. S., Tillinghast, E. K., J. Exp. Zool. 259, 154 (1991).Google Scholar
11. Richter, G., Naturwissenschaften 43, 23 (1956).Google Scholar
12. Vollrath, F. and Tillinghast, E. K., Naturwissenschaften 78, 557 (1991).Google Scholar
13. Tillinghast, E. K., Kavanagh, E. J., Kolbjornsen, P. H., J. Morph. 169, 141 (1981).Google Scholar
14. Laemmli, U. K., Nature 227, 680 (1970).Google Scholar
15. Moore, S. and Stein, W. H., Meth. Enzymol. 6, 819 (1963).Google Scholar
16. Rees, M. W., Biochem. J. 40, 632 (1946).Google Scholar
17. Moore, S., J. Biol. Chem. 238, 235 (1963).Google Scholar
18. Bylund, D. B. and Huang, T.-S., Anal. Biochem. 73, 477 (1976).Google Scholar
19. Cooper, J. A., Sefton, B. M., Hunter, T., Meth. Enzymol. 99, 387 (1983).Google Scholar
20. Atfield, G. N. and Morris, C. J. O. R., Biochem. J. 81, 606 (1961).Google Scholar
21. Heilmann, J., Barrollier, J., Watzke, E., Hoppe-Seyler's Z. physiol. Chem. 309, 219 (1957).Google Scholar
22. Chaplin, M. F., Anal. Biochem. 123, 336 (1982).Google Scholar
23. Catley, B. J., Moore, S., Stein, W. H., J. Biol. Chem. 244, 933 (1969).Google Scholar
24. Ouchterlony, Ö., Prog. Allergy 5, 1 (1958).Google Scholar
25. Svennerholm, L., Biochim. Biophys. Acta 24, 604 (1957).Google Scholar
26. Spiro, R. G., Adv. Prot. Chem. 27, 349 (1973).Google Scholar
27. Anderson, B., Hoffman, P., Meyer, K., J. Biol. Chem. 240, 156 (1965).Google Scholar
28. Montreuil, J., Bouquelet, S., Debray, H., Fournet, B., Spik, G., Strecker, G., in Carbohydrate Analysis: A Practical Approach, edited by Chaplin, M. F. and Kennedy, J. F. (IRL Press, Oxford, 1986), pp. 143204.Google Scholar
29. Zinn, A. B., Plantner, J. J., Carlson, D. M., in The Glycoconjugates, Vol. 1, edited by Horowitz, M. I. and Pigman, W. (Academic Press, New York, 1977), pp. 6985.Google Scholar
30. Kleinschmidt, A. and Zahn, R. K., Z. Naturforsch. 14b, 770 (1959).Google Scholar
31. Rosenberg, L., Hellmann, W., Kleinschmidt, A. K., J. Biol. Chem. 245, 4123 (1970); J. H. Kimura, P. Osdoby, A. I. Caplan, V. C. Hascall, J. Biol. Chem., 253, 4721 (1978).Google Scholar
32. Ericsson, L. H., AAA Laboratory, Mercer Island, WA (private communication).Google Scholar
33. Pigman, W., in The Glycoconjugates, Vol. 1, edited by Horowitz, M. I. and Pigman, W. (Academic Press, New York, 1977), pp. 137152.Google Scholar
34. Laboisse, C. L., Biochimie 68, 611 (1986).Google Scholar
35. Roussel, P., Lamblin, G., Lhermitte, M., Houdret, N., Lafitte, J.-J., Perini, J.-M., Klein, A., A. Scharfman, Biochimie 70, 1471 (1988).Google Scholar
36. Harding, S. E., Adv. Carbohyd. Chem. Biochem. 47, 345 (1989).Google Scholar
37. Strous, G. J. and Dekker, J., Crit. Rev. Biochem. Mol. Biol. 27, 57 (1992).Google Scholar
38. Boat, T.F., Cheng, P. W., Iyer, R. N., Carlson, D. M., Polony, I., Arch. Biochem. Biophys. 177, 95 (1976).Google Scholar
39. Eckhardt, A. E., Timpte, C. S., Abernethy, J. L., Toumadje, A., Johnson, W. C. Jr.,, Hill, R. L., J. Biol. Chem. 262, 11339 (1987).Google Scholar
40. Creeth, J. M., Cooper, B., Donald, A. S. R., Clamp, J. R., Biochem. J. 211, 323 (1983).Google Scholar
41. Juhl, H. and Soderling, T. R., Meth. Enzymol. 99, 37 (1983); J. E. Buss and J. T. Stull, Meth. Enzymol., 99, 7 (1983).Google Scholar
42. Doehr, S. A., in The Glycoconjugates, Vol. 1, edited by Horowitz, M. I. and Pigman, W. (Academic Press, New York, 1977), pp. 239257.Google Scholar
43. Dreesbach, K., Uhlenbruck, G., Tillinghast, E. K., Insect Biochem. 13, 627 (1983).Google Scholar
44. Sinohara, H. and Tillinghast, E. K., Biochem. Int. 9, 315 (1984).Google Scholar
45. Roth, J., Kempf, A., Reuter, G., Schauer, R., Gehring, W. J., Science 256, 673 (1992).Google Scholar
46. Corfield, A. P. and Schauer, R., in Sialic Acids: Chemistry, Metabolism and Function, edited by Schauer, R. (Springer, Vienna, 1982), pp. 550.Google Scholar
47. Bunde, T. A., Dearlove, G. E., Bishop, S. H., J. Exp. Zool. 206, 215 (1978).Google Scholar
48. Rogers, D. J., Blunden, G., Evans, P. R., Med. Lab. Sci. 34, 193 (1977).Google Scholar
49. Hammarström, S. and Kabat, E. A., Biochemistry 10, 1684 (1971).Google Scholar
50. Piller, V., Piller, F., Cartron, J.-P., Eur. J. Biochem. 191, 461 (1990).Google Scholar
51. Goldstein, I. J. and Poretz, R. D., in The Lectins: Properties, Functions, and Applications in Biology and Medicine, edited by Liener, I. E., Sharon, N., Goldstein, I. J. (Academic Press, Orlando, 1986), pp. 33247.Google Scholar