Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:32:51.342Z Has data issue: false hasContentIssue false

Adhesion of Silver Films to Ion-Bombarded Alumina**

Published online by Cambridge University Press:  25 February 2011

R. A. Erck
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, Argonne, IL 60439
F. R. Fenske
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

Silver films were deposited on alumina substrates using ion bombardment. Adhesion strength was measured as a function of deposition conditions, sputter-cleaning time, and bombarding ion species, using a pull-type adhesion tester. Argon- and argon/oxygen-ion sputtering produced large increases in adhesion strength, with the greatest increases occurring for oxygen-ion bombardment. Adhesion strength increased monotonically as a function of ion sputtering time. At a given deposition rate, further enhancement of adhesion is seen with concurrent ion bombardment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

**

Work supported by the U.S. Department of Energy, Energy Conversion and Utilization Technologies Division, under Contract W-31-109-Eng-38.

References

REFERENCES

1 Baglin, J. E. E., in Ion Beam Modification of Insulators, edited by Mazzoldi, P., and Arnold, G. W. (Elsevier, Amsterdam, 1987) pp. 585630.Google Scholar
2 Tombrello, T. A., in Adhesion in Solids, edited by Mattox, D. M., Baglin, J. E. E., Gottschall, R. J., and Batich, C. D. (Mater. Res. Soc. Proc. 112, Pittsburgh, PA, 1988) pp. 95102.Google Scholar
3 Baglin, J. E. E., Schrott, A. G., Thompson, R. D., Tu, K. N., and Segmuller, A., Nucl. Instrum. Methods B19/20. 782786 (1987).Google Scholar
4 Martin, P. J., Sainty, W. G., and Nettterfield, R. P., Appl. Optics 22 (16), 26682669 (1984).Google Scholar
5 Salem, J., and Sequeda, F., J. Vac. Sci. Technol. 18 (2), 149152 (1981).Google Scholar
6 Kikuchi, A., Baba, S., and Kinbara, A., Thin Solid Films 124, 343349 (1985).Google Scholar
7 Budhani, R. C., Prakash, S., Doerr, H. J., and Bunshah, R. F., J. Vac. Sci. Technol. A 4 (6), 30233024 (1986).Google Scholar
8 Smidt, F. A., in Proceedings of the 1987 Coatings for Advanced Heat Engines Workshop. (U.S. Dept. of Energy CONF-870762. 1987) pp. v29v34.Google Scholar
9 Erdemir, A., Fenske, G., Erck, R., and Cheng, C., STLE Preprint 89-AM-5C-1, (accepted for publication) (1989).Google Scholar
10 Bull, S. J., Rickerby, D. S., Matthews, A., Leyland, A., Pace, A. R., and Valli, J., Surface and Coatings Technol. 26, 503517 (1988).Google Scholar
11 Sekler, J., Steinmann, P. A., and Hintermann, H. E., Surface and Coatings Technol. 36, 519529 (1988).Google Scholar
12 Baglin, J. E. E., and Clark, G. J., Nucl. Instrum. Methods B7/8. 881885 (1985).Google Scholar
13 Kaufman, H. R., and Robinson, R. S., Operation of Broad-Beam Sources. (Commonwealth Scientific, Alexandria, VA, 1984).Google Scholar
14 Hoffman, D. W., and Gaerttner, M. R., J. Vac. Sci. Technol. 12 (1), 425428 (1980).Google Scholar
15 Fuchs, G., Abonneau, E., Treilleux, M., and Perez, A., Mater. Sci. Eng. A109. 8388 (1989).Google Scholar
16 Erck, R. A., and Fenske, G. R., in Proceedings of the 16th International Conference on Metallurgical Coatings. 1721 April, 1989, San Diego, CA. (accepted for publication).Google Scholar