Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T19:55:42.439Z Has data issue: false hasContentIssue false

Adhesion of Copper to Teflon ® poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) Surfaces Modified by Vacuum UV Photo-oxidation Downstream from Argon Microwave Plasma

Published online by Cambridge University Press:  01 February 2011

W. Dasilva
Affiliation:
Department of Chemistry, Center for Materials Science and Engineering, Rochester Institute of Technology, Rochester, NY 14623, U.S.A
A. Entenberg
Affiliation:
Department of Physics, RIT, Rochester, NY 14623, U.S.A
B. Kahn
Affiliation:
Department of Imaging & Photographic Technology, RIT, Rochester, NY 14623, U.S.A
T. Debies
Affiliation:
Xerox Corporation, Webster, NY 14580, U.S.A
G. A. Takacs
Affiliation:
Department of Chemistry, Center for Materials Science and Engineering, Rochester Institute of Technology, Rochester, NY 14623, U.S.A
Get access

Abstract

Good practical adhesion of sputter-deposited Cu is achieved to poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) surfaces at short treatment times of vacuum UV (VUV) photo-oxidation downstream from Ar microwave (MW) plasma. Factors contributing to the adhesion include: (1) an improvement in wettability as observed by water contact angle measurements; (2) surface roughening; (3) defluorination of the surface; (4) cross-linking at the surface and (5) incorporation of oxygen as CF-O-CF2, CF2-O-CF2 and CF-O-CnF2n+1 moieties. With long treatment times, a cohesive failure occurred within the modified PFA and not at the Cu-PFA interface due to extensive chain scission weakening its mechanical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kang, E. T. and Zhang, Y., Adv. Mater. 12, 1481 (2000).Google Scholar
2. Dasilva, W., Entenberg, A., Kahn, B., Debies, T. and Takacs, G. A., Polymeric Materials Science and Engineering 90, 833 (2004); J. Adhesion Sci. Technol. accepted for publication (2004).Google Scholar
3. Matienzo, L. J., Zimmerman, J. A. and Egitto, F. D., J. Vac. Sci. Technol. A12, 2662 (1994).Google Scholar
4. The C-O bond energy in PFA was estimated from: (1) the bond energy in F3C-OF using the heats of formation for CF3 (-112.4 kcal/mol), OF (25.999 kcal/mol) and CF3OF (-182.8 kcal/mol) [NIST Chemistry WebBook, NIST Standard Reference Database, No. 69, March (2003)] and (2) an evaluation of a wide variety of bond energy terms [Leroy, G., Sana, M., Wilante, C. and van Zieleghem, M.-J., J. Molecular Structure 247, 199 (1991)].Google Scholar
5. Cottrell, T. L., The Strengths of Chemical Bonds, 2nd ed., Butterworths, Washington, DC (1958).Google Scholar
6. Sheppard, W. A. and Sharts, C. M., Organic Fluorine Chemistry, W. A. Benjamin, NY (1969).Google Scholar
7. Egitto, F. D. and Matienzo, L. J., Polym. Degrad. Stabil. 30, 293 (1990).Google Scholar
8. Okabe, H., Photochemistry of Small Molecules, John Wiley & Sons, New York (1978).Google Scholar
9. Watanabe, K. and Marmo, F. F., J. Chem. Phys. 25, 965 (1956).Google Scholar
10. Desai, H., Xiaolu, L., Entenberg, A., Kahn, B., Egitto, F. D., Matienzo, L. J., Debies, T. and Takacs, G. A., in: Polymer Surface Modification: Relevance to Adhesion, Mittal, K. L. (Ed.), Vol. 3, p. 139, VSP, Utrecht (2004).Google Scholar
11. Momose, Y., Tamura, Y., Ogino, M. and Okazaki, S., J. Vac. Sci. Technol. A10, 229 (1992).Google Scholar
12. Rasoul, F. A., Hill, D. J., George, G. A. and O'Donnell, J. H., Polym. Adv. Technol. 9, 24 (1998).Google Scholar
13. Chen, J. X., Tracy, D., Zheng, S., Xiaolu, L., Brown, S., VanDerveer, W., Entenberg, A., Vukanovic, V., Takacs, G. A., Egitto, F. D., Matienzo, L. J. and Emmi, F., Polym. Degrad. Stab. 79, 399 (2003).Google Scholar
14. Vasilets, V. N., Hirata, I., Iwata, H. and Ikada, Y., J. Polym. Sci. A: Polym. Chem. 36, 2215 (1998).Google Scholar
15. Cain, S. R., Egitto, F. D. and Emmi, F., J. Vac. Sci. Technol. A5, 1578 (1987).Google Scholar
16. Chang, C., Kim, Y. and Lee, S. S., Plastic Eng. (Metallized Plastics) Marcel Dekker, New York, NY 43, 345 (1998).Google Scholar
17. Shi, M. K., Selmani, A., Martinu, L., Sacher, E., Wertheimer, M. R. and Yelon, A., in: Polymer Surface Modification: Relevance to Adhesion, Mittal, K. L. (Ed.), p. 73, VSP, Utrecht (1995).Google Scholar
18. Klemberg-Sapieha, J. E., Shi, M. K., Martinu, L. and Wertheimer, M. R., 275, Suppl., 10th Int. Colloquium on Plasma Processes, p. 100 (1995).Google Scholar
19. Zheng, S., Entenberg, A., Takacs, G. A., Egitto, F. D. and Matienzo, L. J., J. Adhesion Sci. Technol. 17, 1801 (2003).Google Scholar
20. Wu, S., Kang, E. T. and Neoh, K. G., J. Adhesion Sci. Technol. 14, 1451 (2000).Google Scholar
21. Park, Y. W., Tasaka, S. and Inagaki, N., J. Appl. Polym. Sci. 83, 1258 (2002).Google Scholar
22. Schonhorn, H. and Hansen, R. H., J. Appl. Polym. Sci. 11, 1461 (1967).Google Scholar
23. Egitto, F. D., Matienzo, L. J., Blackwell, K. J. and Knoll, A. R., J. Adhesion Sci. Technol. 8, 411 (1994).Google Scholar